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a b s t r a c t

The main goal of this paper is to develop a comprehensive beam model based on the micropolar elas-
ticity theory which is as general, as easy to use, and as convenient as the classical beam theories. Un-
complicated torsion and bending theories for micropolar elastic beams deforming in three-dimensional
space and under different types of external loading and boundary conditions are presented in this paper.
Unlike the classical beam models, the developed beam model includes the effect of microinertia and
contains new material parameters to capture the microstructure-dependent size effects which could be
useful when dealing with micro scale beams. The presented micropolar beam model generalizes the
Duleau torsion and Timoshenko bending beam models to include the microstructure effects. Hamilton's
principle and a variational approach are used to derive the dynamic equations of the micropolar beam
with longitudinal, torsional, and bending deformations. Then the governing dynamic equations are
solved numerically by using a finite element approach and numerical results for a simply supported
micropolar beam are provided. The static and dynamic behaviors of the developed micropolar beam
model are studied and compared against the classical beam models. In particular, the conditions for
recovery of the results of the classical beam theories, i.e. Duleau and Timoshenko theories, are addressed.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Beams are ubiquitous, they occur in a wide range of engineer-
ing applications from NEMS and MEMS scale biosensors and
atomic force microscopes [1,2] to very large buildings, bridges, and
space structures [3–5]. For large scale structural systems classical
elasticity theory provides us with good engineering theories for
beam bending, e.g. Euler–Bernoulli or Timoshenko bending theory
[6], and torsion, e.g. Duleau torsion theory [7]. For small scale
beams the classical beam theories lack the ability to capture the
“size effects” [8,9] and they also fail to adequately take into account
the asymmetric stress tensor that arises in the presence of a body
(volume) moment [10–12]. The microstructure-dependent size
effects are negligible at the macro scale but have been docu-
mented to be important at the nano and micro scales [13,14].
These observations have resulted in the development of beam
models based on continuum theories that can account for the size
effects through the use of additional material parameters. Ex-
amples include the couple-stress [15,16] and micropolar [17–19]
elasticity theories.

Microstructure-dependent beam models based on the couple-
stress theory and Eringen's non-local elasticity theory [20] have
attracted attention in conjunction with the NEMS and MEMS ap-
plications (e.g. see [21,22] and their references). These models,
however, suffer from a degree of complexity that makes them
unattractive for application in engineering problems. Even in
NEMS and MEMS systems classical beam theories are still widely
relied upon [23,24]. The relative lack of use of micropolar beam
theories in these engineering applications is also due to the ab-
sence of a versatile formulation which has a broad set of solutions
for a range of boundary conditions and loading cases. In other
words, existing micropolar beam models for both torsion and
bending are usually dedicated to pure bending or torsion of beams
with uniform circular or square cross-section subject to a bending
or torsion moment at the ends and do not seem as convenient as
classical beam torsion and bending models to a practitioner.
Treatments of pure bending of micropolar elastic beams [25–27]
are typically very complicated and difficult to understand as are
treatments of pure torsion [8,28–30]. Not to mention that setting
up a finite element approach on these treatment is not a
straightforward task. Indeed, despite its importance little research
has been found on a finite element formulation for micropolar
beams. There is only a preliminary work by Huang et al. [31] that
briefly mentions the finite element formulation for an over-
simplified micropolar beam bending model.
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The simple micropolar beam bending model developed by
Huang et al. [31] is based on the assumptions that shear de-
formations are negligible and the microrotation over the beam
cross-section is constant and equal to the rotation of the beam
plane section due to the bending. This model can be considered as
an extension of the classical Euler–Bernoulli bending formulation.
In a similar approach, by assuming that beam microrotations are
constant over the beam cross-section and equal to the classical
plane section bending and torsional rotations, Goda et al. [32]
developed reduced micropolar torsion and bending theories.
However, it should be noted that assuming equal macro- and
micro-rotations (i.e. equal classical and micropolar rotations) in
these models results in reducing the micropolar elasticity theory
to the couple-stress theory. Therefore, the models in [31,32] may
not be considered as micropolar beam models and are rather
couple-stress beam theories.

Ramezani et al. [33] have presented a more general but still
simplified micropolar beam bending model that is a generalization
of the Timoshenko bending model. They assumed that the mi-
crorotation is constant over the beam cross-section but is different
from the bending rotation of the beam plane section. Un-
fortunately, both Haung et al. and Ramezani et al. used an in-
correct definition for the strain tensor in terms of displacement
and microrotation fields early in their derivation of the governing
equations and therefore their results are questionable. The erro-
neous strain definition in these two papers can be appreciated by
comparing the first equation of each paper with the strain defi-
nition in any of [8,28,29]. Finally, Aganović et al. [34] used an
asymptotic approach to derive a simple beam model from micro-
polar elasticity theory. The final set of equations are however
questionable (particularly for torsional deformations), no bound-
ary conditions are derived, and no numerical results are presented.

The purpose of this paper is to present the development of a
simplified but otherwise comprehensive beam model that can si-
multaneously deal with general axial deformation, bending, and
torsion while using a micropolar elasticity material formulation
that accounts for microinertia effects, and microstructure-depen-
dent size effects. The bending behavior is captured by a general-
ized form of Timoshenko bending theory and the torsional beha-
vior is characterized by an extended form of Duleau torsion theory.
The developed micropolar beam model allows for an effortless
direct set up of a finite element formulation in the weak form to
solve the beam equations in both static and dynamic cases. To il-
lustrate the developed beam model, the static and dynamic be-
haviors of a simply supported micropolar beam are studied.

The paper is organized as follows. After presenting the notation
in Section 2, the fundamental equations of the linear micropolar
elasticity are reviewed in Section 3 and the kinematic assumptions
for derivation of the micropolar beam model are addressed in
Section 4. Then the potential and kinetic energy expressions and
the virtual work expression are obtained in Sections 5–7. Ha-
milton's principle is then applied to these expressions to derive
the governing dynamic equations and boundary conditions given
in Section 8. Numerical solution of the derived equations by em-
ploying a finite element approach is addressed in Section 9. Ex-
ample results are reported and compared against those of the
classical beam models in Section 10. Finally, the summary and
conclusions are given in Section 11.

2. Notational conventions

In this paper Cartesian tensor concepts and accompanying in-
dex notations are used where it is meaningful. Generally, small
Latin subscripts i, j, and k take the values 1–3 (unless mentioned
otherwise). For expressions with repeated Latin subscripts, the

Einstein summation convention over that subscript, from 1 to 3 , is
understood. A comma followed by a subscript denotes partial
differentiation with respect to the corresponding Cartesian co-
ordinate (see [35,36]), i.e. z i, is equivalent to dz

dxi
.

The elements of a vector (first-order tensor) v and a dyadic
(second-order tensor) d, described in a frame A, are shown as vi

a

and dij
a respectively. In general, a leading superscript denotes the

name of the frame in which a description or operation is done.
This leading superscript is omitted when the inertial frame o
serves as the reference frame. A matrix is denoted as

͠
m, its

transpose is denoted as
͠

mT, and its elements are referred to by mij.

3. A review of linear micropolar elasticity

Although well developed and verified [37] the classical theory
of linear elasticity fails to produce acceptable results for the cases
with large stress gradients or for materials with significant mi-
crostructure contribution (e.g. composites, polymers, soil, and
bone, especially when the dimensions involved in the problem are
relatively small) [19]. It is not an appropriate theory for asym-
metric stress–strain analysis (as may arise with an elastic body
under the action of a volume moment distribution e.g. gyroelastic
materials [12,38] and magnetized materials [10]). For these cases
newer material models such as couple-stress theory and micro-
polar elasticity theory are more suitable.

The origins of micropolar elasticity begin with Voigt's work [39]
on adding an independent couple stress vector to the classical
force stress vector to describe the interactions between neigh-
boring elements of an elastic body. Voigt's theory, known as cou-
ple-stress elasticity, was further developed by E. and F. Cosserat
[40] who suggested independent displacement and microrotation
field vectors. Their assumptions lead to six degrees of freedom
(DOFs) for every element of the body and a description of strain
and stress in terms of asymmetric tensors. The Cosserat theory of
elasticity was further developed by Eringen [18] who extended the
theory to include microinertia effects.

In micropolar elasticity the conventional displacement field ui
and the force stress tensor σij are complemented by an in-
dependent microrotation field ϑi and a couple stress tensor χij. The
body deformation is characterized in terms of the potentially
asymmetric strain tensor ϵij and twist tensor τij which are defined
as:

ε τϵ = − ϑ = ϑ ( )u , , 1ij j i ijk k ij j i, ,

where εijk is the third-order Levi-Civita or permutation tensor.
The micropolar elasticity constitutive relations that relate σij

and χij to τij and τij are presented in terms of two relations con-
taining six elastic constants, specifically:

( ) ( )
( ) ( )

σ μ κ μ κ λ

χ γ β τ γ β τ ατ

= + ϵ + − ϵ + ϵ

= + + − + ( )j

1 ,

1 , 2

ij ij ji kk ij

ij i ij kk ij

where 1ij is the Kronecker delta tensor. The six elastic constants are
the Lamé coefficients μ and λ (μ is the shear modulus), and four
extra micropolar elastic constants κ, γ, β, and α representing the
contribution of the material microstructure to the elastic proper-
ties of the body. The micropolar couple modulus κ couples the
displacement and microrotation DOFs to each other. The ratios
β μ( )/ 1/2 and γ μ( )/ 1/2 represent the two length scales of the micro-
polar material, and the ratio α γ α( + )/2 is the micropolar Poisson's
ratio relating the transverse curvature to the principal curvature.
Finally, based on the linear theory of micropolar elasticity, the total
strain energy and the kinetic energy take the form:
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