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a b s t r a c t

A cable structure is composed of several wire strands wound together. Previously, the mechanical
properties of cables mainly included withstanding axial tension and torsion. However, when applied in
space deployable structures, the bending behavior of cables directly affects the dynamic response of
deployment under the conditions of microgravity and zero tension. Existing cable bending models and
their applicable conditions are assessed in this study. 1�7 cable structure models are established, and
finite element analysis is conducted with ABAQUS. Equivalent bending modulus is obtained at different
helix angles of the cable models. The effects of contact and friction among the strands are analyzed. The
calculated and theoretical results from existing models are compared.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A helically wound structure constitutes a wide class of im-
portant engineering components. This structure has various uses:
from cables for stabilizing a deployable structure to large wire
ropes serving as structural anchors for buildings and bridges [1–5].
When utilized in deployable structures, cables begin to contact
and even knot with one another in the unfolding process [6]. This
condition leads to the failure of the structure to unfold in the
vacuum of space and in a microgravity environment. Thus, the
behavior of cable structures needs to be studied extensively,
especially bending behavior.

Complex analytical models have been established recently
based on the assumption of beam theory that the wires are
modeled using Love's curved beam equations [7]. Costello [8,9]
described a cable structure as being formed by a number of string
wires helically wound through the central core, and the outer
wires are arranged in a cylinder-shaped manner. Thus, several
central cores or outer wires with different helix angles and radii
may be present in the cable structure and thus make the structure
a very complex mechanical one. The wires or cores can be stret-
ched, twisted, and bent; therefore, the contact condition affects
the behavior of cable structure deformation. Many different hy-
potheses have been established to simulate cable structures.
Considering the geometrics of cable structures, Chiang [10] uti-
lized the finite element method to study the effect of six factors on

the stiffness of cable structures. The six factors are the radius of
the core line, the radius of the wire, the helix angle, boundary
conditions, length of the model, and contact conditions between
the core and wires. Chiang also observed the interaction among
different cable structure parameters. The interaction between the
helix angle and boundary conditions had a significant effect on the
simulation results in the test. Papailiou [11] studied the effect of
the coupling of tensile and bending loads and proposed a new
model. The model considers the friction and slip that occur be-
tween layers during bending. A variable bending stiffness, in
which the value of the model's bending stiffness varies with the
change in bending curvature and axial tension applied on the wire
cables, was thus obtained. The result was verified through an
experiment.

Several researchers considered the bending of cables in another
manner. The entire behavior of the assembly was inferred from its
constituent wires or cable structure, thus giving rise to the discrete
model. Another method was proposed by Cardou and Jolicoeur
[12]; they considered all conductor layer wires as an equivalent
orthotropic elastic continuum and thus established the semi-
continuous or cylinder model.

Raoof and Hobbs [13] and Jolicoeur and Cardou [14] presented
a semi-continuous model, wherein the helix wires of each layer
are modeled as a complete cylinder with different mechanical
properties to match the mechanical property of the entire layer of
the cable structure. The same basic mechanics method was
adopted; the similarity of all semi-continuous models is that each
wire layer is modeled as a cylinder in a variety of methods. The
effect of friction between wires and the stiffness of each wire are
considered in these models. Recently Hong et al. [15] discuss the
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influence of the friction coefficient and interactions between wires
with the wire curvature of the bent cable. Jolicoeur [16] published
a comparative study of these uniform cylinder models and re-
ported that Raoof–Hobbs’ model is only applicable for calculation
in axial tension or torsional loads and fails to obtain the exact
value of bending stiffness. Therefore, whether the Jolicoeur–Car-
dou model can be utilized to predict the bending behavior of a
cable structure is worthy of discussion. Raoof and Kraincanic
compared and analyzed discrete and semi-continuous models and
found that the former is more reliable for small-diameter struc-
tures because it has less cable chains; the latter is more applicable
to large-diameter cable structures [17]. Triantafyllou used the
beam bending model to study the coupling between axial and
lateral vibration and obtained the value of the bending stiffness of
the cable structure [18]. Chen Yuan Pei [19] also made use of finite
element analysis to compare the bending behavior of different
cable structures.

Previous studies mainly focused on strand wires because of
their significant advantages, such as the ability to withstand large
axial load and having a relatively small bending and torsion stiff-
ness. Although bending characteristics are considered in several of
these models, they are different from the model of flexible cable
structures in microgravity conditions. For example, a large curva-
ture may appear in the process of a flexible cable bending in a
microgravity environment; hence, nonlinear behavior occurs. In
addition, a structure becomes highly unstable because the effect of
gravity and air damping in the environment is neglected. There-
fore, validation and analysis of these models need to be conducted,
particularly with regard to the bending behavior of a cable struc-
ture. A summary of the limitations of each model needs to be
presented.

A 1�7 helix cable structure was selected in this study to assess
the accuracy and validity of static pure bending behavior in several
analysis models. The influence of assumptions in the different
models is discussed by comparing the results of finite element (FE)
modeling and the theory model. A conclusion is then obtained.

In Section 2, the relationships among the geometric parameters
of a cable structure model are analyzed, and the geometry char-
acteristics and corresponding parameters are investigated. Section
3 presents a description of three existing flexible models and an
analysis of the assumptions and limitations of each model. A 3D FE
model is presented in Section 4, and the FE results are compared
with those of the existing theoretical model. Afterward, the results
are analyzed and compared with those of the FE models. The
model is then modified according to the analysis results.

2. description of the geometric model

A single 1�7 straight-strand cable made of six helical wires
with a circular cross section wrapped around a straight core was
considered (Fig. 1). The cord cable structure has a straight center
core. The wire cable core is surrounded by outer circle wires. The
angle of the laying wires along the axis of the outer layer is called
the helix angle [3], denoted as α. The three laying types include
left twist, right twist, and twist around each other according to the
direction of the laying lines. We selected only the simple right
twist 1�7 type cable structure for analysis. In the formula below,
r is the radius of the helix, R1 is the radius of the core wire, R2 is the
radius of the outer layer wires, and ′R2 is the long axle size of the
oval cross section of the outer wires. Good contact is achieved
when no tangential clearance exists between the core and outer
wires. The following relationship exists between them [20].
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The section of each outer laying wire is oval. Pitch length, re-
ferred to as p, can be calculated with the following expression [21].
The relationship of pitch length, inner diameter, and laying angle
is as follows:
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The Helix angle and pitch length in the model are shown in
Table 1.

The pure bending of a homogeneous beam is generally ana-
lyzed based on three assumptions: the deformed cross section of
the beam remains a plane and is perpendicular to the axis of the
beam, and no interaction occurs among the longitudinal elements.
Many factors can cause a nonlinear problem. These factors include
uneven cross section and internal damping among wires.

3. Descriptions of the analytical models

Free body equilibrium requires that the external applied
bending moment is counterbalanced at each conductor cross
section by the internal moments acting on each wire of this cross
section. A cable structure follows with good approximation for the
bending equation [11],

κ= ( )M EI , 3

where EI stands for the bending stiffness of the cable structure and
κ stands for the curvature of the cable. The relationship with the
radius of curvature ρ is

κ
ρ
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The effect of friction on bending deformation is generally ob-
vious, especially when the stress caused by the axial tension in the
internal parts of the cable structure is considered. However, fric-
tion and slippage are ignored when the cable structure is purely
bent. The friction caused by the interaction force resulting from
pure bending is not discussed in this section (to be discussed
later).

In the cable model of stress caused by axial tension, the result
of the model analysis is sensitive to the friction coefficient. Thus,
the choice of the friction coefficient between two adjacent wires is
worthy of attention. For this reason, two cable models of different
friction coefficients, μ1¼ 0.15 and μ2¼ 0.5, were adopted in this
study.

The friction effects for the bending of the cable model vary
based on the different causes. The deformation process generally
involves three processes: stick, transition, and slip.

3.1. Costello's model

Costello [9] considered the macroscopic behavior of cable
structures and published his theory in 1990. The assumption is
that all wires are free and have no influence on one another. The
stresses are then calculated. In his theory, the model study is
sufficiently long, and the bending process is considered linear.
However, the nonlinear factors caused by the interaction during
the bending process are not considered. These factors are contact,
friction, nonlinear distortion, and instability, as shown in Fig. 2.
Thus, with the sum of all wire bending stiffness method, the
smallest possible value of the bending stiffness of the cable model
is obtained.
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