#### Accepted Manuscript

Full Length Article

GaN nanocolumns fabricated by self-assembly Ni mask and its enhanced photocatalytic performance in water splitting

Xin Xi, Chao Yang, Haicheng Cao, Zhiguo Yu, Jin Li, Shan Lin, Zhanhong Ma, Lixia Zhao

PII: S0169-4332(18)32249-9

DOI: https://doi.org/10.1016/j.apsusc.2018.08.113

Reference: APSUSC 40150

To appear in: Applied Surface Science

Received Date: 26 March 2018
Revised Date: 26 July 2018
Accepted Date: 13 August 2018



Please cite this article as: X. Xi, C. Yang, H. Cao, Z. Yu, J. Li, S. Lin, Z. Ma, L. Zhao, GaN nanocolumns fabricated by self-assembly Ni mask and its enhanced photocatalytic performance in water splitting, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.08.113

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

# GaN nanocolumns fabricated by self-assembly Ni mask and its enhanced photocatalytic performance in water splitting

Xin Xi, Chao Yang, Haicheng Cao, Zhiguo Yu, Jin Li, Shan Lin, Zhanhong Ma, Lixia Zhao\*

†Semiconductor Lighting Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, P. R. China

‡ College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

\*lxzhao@semi.ac.cn

## **Highlights**

- GaN nanocolumns with different diameters were fabricated by Inductively coupled plasma using self-assembly Ni mask.
- 2. The absorption property of GaN nanocolumns was investigated by the PL spectrum and detailed mechanism was analyzed according to the data.
- 3. The GaN nanocolumns showed excellent photocatalytic activity.
- 4. A model was put forward to explain the relation between the photocatalytic property and the GaN diameters.

Keywords: GaN; nanocolumns; water splitting

Abstract: We investigate the influence of Gallium Nitride (GaN) nanocolumns on the water splitting. The results show that with the GaN nanocolumns diameters decreasing from 250 to 170 nm, the photocurrents for the water splitting increase from 0.12 to 0.29 mA/cm<sup>2</sup>. The highest photocurrent is ~ 2.8 times higher than that of the planar GaN. The increase is mainly related to the surface states, which will lead to a band bending and help to separate the photo-generated carriers more effectively.

#### Download English Version:

# https://daneshyari.com/en/article/7832757

Download Persian Version:

https://daneshyari.com/article/7832757

<u>Daneshyari.com</u>