Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

# $Ni/Al_2O_3\text{-}ZrO_2$ catalyst for $CO_2$ methanation: The role of $\gamma\text{-}(Al,\,Zr)_2O_3$ formation

Yingying Zhan<sup>a</sup>, Yangyan Wang<sup>a</sup>, Dongmei Gu<sup>a</sup>, Chongqi Chen<sup>a,\*</sup>, Lilong Jiang<sup>a,\*</sup>, Katsuomi Takehira<sup>b</sup>

<sup>a</sup> National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Gongye Road 523, Fuzhou 350002, Fujian, China
<sup>b</sup> Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

| ARTICLEINFO                 | A B S T R A C T                                                                                                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords:                   | CO <sub>2</sub> methanation could offer significant energy and environment benefits if efficient catalyst is developed. Ni-                             |
| CO <sub>2</sub> methanation | based catalyst is the most promising catalyst for this reaction. Herein, a series of ZrO <sub>2</sub> doped Ni/Al <sub>2</sub> O <sub>3</sub> catalysts |

highest reactivity in the CO2 methanation.

 $CO_2$  methanation Ni/Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> NiAl<sub>2</sub>O<sub>4</sub>  $\gamma$ -(Al, Zr)<sub>2</sub>O<sub>3</sub> solid solution

## 1. Introduction

Carbon dioxide ( $CO_2$ ) is one of the main contributors to greenhouse effect with consequent climate change, therefore, growing efforts are put in to control the accumulation of atmospheric  $CO_2$ . The most commonly studied technology is Carbon Capture and Sequestration (CCS) that consists capture, transportation and underground storage [1]. However, because  $CO_2$  turns out to be an attractive C1 building block, conversions of  $CO_2$  to a variety of value added products, e.g. methanol [2] or methane [3], are considered to be more attractive routes.

CO<sub>2</sub> methanation (CO<sub>2</sub> + 4H<sub>2</sub> ↔ CH<sub>4</sub> + 2H<sub>2</sub>O,  $\Delta$ H<sub>298</sub> = -165 kJ/ mol) is one such route where CO<sub>2</sub> is converted to value added CH<sub>4</sub>, which is a promising building block for chemicals production or directly uses as fuels [4]. CO<sub>2</sub> methanation is a catalytic reaction based on supported VIII group metals (e.g., Ru, Rh, Co, Fe, Ni) on various oxide supports [5–7]. Ni-based catalysts are the most widely studied materials due to its low cost and good catalytic activity towards CO<sub>2</sub> methanation [8–10]. Both reducible and inert oxides can be used as catalyst supports. Ni catalysts supported on reducible supports CeO<sub>2</sub> or CeO<sub>2</sub>-ZrO<sub>2</sub> with abundant oxygen vacancies are effective in CO<sub>2</sub> or oxygen species adsorption, showing highly catalytic activity [11,12]. Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> are inert supports for Ni-based catalysts [13,14], and the Ni/Al<sub>2</sub>O<sub>3</sub> catalyst, either alone or with addition of promoters [13,15], is currently the most widely investigated systems for CO<sub>2</sub> methanation.

were fabricated by a co-precipitation method, and their reactivities with respect to the CO<sub>2</sub> methanation were

evaluated. Catalytic activities of the ZrO<sub>2</sub>-doped Ni/Al<sub>2</sub>O<sub>3</sub> catalysts for CO<sub>2</sub> methanation are superior to the

undoped one. Characterization results suggest that  $\gamma$ -(Al, Zr)<sub>2</sub>O<sub>3</sub> solid solution is formed after the introduction of ZrO<sub>2</sub>, which results in weakening the NiO-Al<sub>2</sub>O<sub>3</sub> interaction and inhibits the formation of spinel NiAl<sub>2</sub>O<sub>4</sub>. After activated by hydrogen reduction, those ZrO<sub>2</sub>-doped NiO/Al<sub>2</sub>O<sub>3</sub> catalysts show smaller Ni nanoparticles sizes, and the one doped with 16 wt% ZrO<sub>2</sub> (Ni/AZ16) possesses the smallest sizes of Ni nanoparticles and shows the

Metallic nickel (Ni<sup>0</sup>) in Ni/Al<sub>2</sub>O<sub>3</sub> catalyst is supposed to be active species for CO<sub>2</sub> methanation, and the Ni<sup>0</sup> with small particle size shows highly catalytic activity and selectivity [16]. NiAl<sub>2</sub>O<sub>4</sub> can be formed during high temperature calcination of Ni/Al<sub>2</sub>O<sub>3</sub> catalysts, and the amount of NiAl<sub>2</sub>O<sub>4</sub> increased upon decreasing the Ni/Al ratio [17]. NiAl<sub>2</sub>O<sub>4</sub> was proved to be effective in enhancing the stability of Ni nanoparticles, owning to its spinel structure, whereas the formation of NiAl<sub>2</sub>O<sub>4</sub> results in decreasing the amount of active Ni<sup>0</sup> [17]. Therefore, in order to improve the catalytic performance of Ni/Al<sub>2</sub>O<sub>3</sub> catalyst with low Ni/Al ratio, an optimized amount of NiAl<sub>2</sub>O<sub>4</sub> formation is desirable. It was stressed by Aghayan et al. [16] that NiO with average particle size of 4 nm was formed on the surface of Al<sub>2</sub>O<sub>3</sub>; this Al<sub>2</sub>O<sub>3</sub> is covered by a NiAl<sub>2</sub>O<sub>4</sub> nanolayer, which prevented the NiO from reacting with Al<sub>2</sub>O<sub>3</sub> to form more NiAl<sub>2</sub>O<sub>4</sub>; in this way, the catalyst stayed active and stable for CO<sub>2</sub> methanation.

 $ZrO_2$  is soluble in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> to form amorphous polymer-like structure  $\gamma$ -(Al, Zr)<sub>2</sub>O<sub>3</sub> solid solution on the surface of Al<sub>2</sub>O<sub>3</sub> [19,20].  $ZrO_2$  along with TiO<sub>2</sub> and CeO<sub>2</sub> were introduced into  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> as support for Nibased CO<sub>2</sub> methanation catalyst [21], and it was found that the reducibility nature of the catalyst was improved, consequently better catalytic performance was achieved. However, to the best of our

\* Corresponding authors.

E-mail addresses: c.q.chen@fzu.edu.cn (C. Chen), jll@fzu.edu.cn (L. Jiang).

https://doi.org/10.1016/j.apsusc.2018.07.206

Received 4 April 2018; Received in revised form 25 July 2018; Accepted 29 July 2018 Available online 30 July 2018

0169-4332/ © 2018 Elsevier B.V. All rights reserved.





knowledge, the effect of  $\gamma$ -(Al, Zr)<sub>2</sub>O<sub>3</sub> on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> supported Ni-based catalyst is still not unraveled. In this contribution, a series of Ni/Al<sub>2</sub>O<sub>3</sub> catalysts modified by different amount of ZrO<sub>2</sub> utilizing co-precipitation method were prepared. Their catalytic performances with respect to CO<sub>2</sub> methanation were investigated. The physicochemical properties of those catalysts were characterized by XRD, N<sub>2</sub>-physisorption, H<sub>2</sub>-TPR, TEM, DRS and XPS techniques. The effect of the doping amount of ZrO<sub>2</sub> on the catalyst structures and their catalytic performances for CO<sub>2</sub> methanation of  $\gamma$ -(Al, Zr)<sub>2</sub>O<sub>3</sub> solid solution weakens the interaction between NiO and Al<sub>2</sub>O<sub>3</sub> and inhibits the formation of NiAl<sub>2</sub>O<sub>4</sub>. The ZrO<sub>2</sub> modified Ni/Al<sub>2</sub>O<sub>3</sub> catalysts show higher catalytic activities towards CO<sub>2</sub> methanation than the undoped one.

## 2. Experimental

#### 2.1. Catalyst preparation

**Materials:** Analytical grade nickel nitrate (Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O), aluminum nitrate (Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O), zirconium nitrate (Zr(NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O), polyethylene glycol (PEG), and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) were purchased from Shanghai Chemical Reagent Ltd. and used without further purification.

Synthesis:  $ZrO_2$ -doped Ni/Al<sub>2</sub>O<sub>3</sub> catalysts were prepared by a coprecipitation method: Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O and Zr (NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O were dissolved in 200 mL of deionized (DI) water together with an appropriate amount of PEG. The mixed aqueous solution was co-precipitated with an aqueous solution of 1 mol/L Na<sub>2</sub>CO<sub>3</sub> at pH = 8.0 ± 0.2 at 60 °C under vigorous stirring. The resulting precipitates were aged at the same temperature for 16 h, filtered and washed with DI water, dried at 90 °C for 12 h. The powders were calcined at 800 °C for 4 h in static air. The as-prepared samples were denoted as NiO/AZX, where X represents the nominal content (wt.%) of ZrO<sub>2</sub> in ZrO<sub>2</sub>-A1<sub>2</sub>O<sub>3</sub>, X = 0, 8, 12, 16, and 20. The samples reduced by 75 vol% H<sub>2</sub>/N<sub>2</sub> (50 mL min<sup>-1</sup>) at 750 °C for 1.5 h were denoted as Ni/AZX. The nominal Ni loading of the Ni/AZX catalysts was fixed at 15 wt%. Those samples calcined at 800 °C for 4 h followed by calcinated at 1000 °C for 2 h were named as NiO/AZX-1000.

### 2.2. Catalyst characterizations

Powder X-ray diffraction (XRD) measurements were performed on a PANalytical X'pert Pro diffractometer using Co K $\alpha$  radiation ( $\lambda = 0.1789$  nm) at 40 kV and 40 mA for 2 $\theta$  angles ranging from 20 to 100°.

N<sub>2</sub>-physisoption was carried out on a Micrometeritics ASAP 2020 apparatus at liquid nitrogen temperature. Prior to analysis, samples were degassed at 300 °C for 3 h to a residual pressure of less than  $10^{-5}$  Torr. The specific surface area was calculated by BET method and the pore size distribution was calculated by BJH method. Transmission electron microscopy (TEM) measurements were performed on a FEI Tecnai G2 F30 microscope at 300 kV. A few droplets of sample suspended in ethanol were placed on a carbon-coated copper grid followed by evaporation at ambient conditions.

UV–Vis Diffuse reflectance spectra (DRS) of the samples were measured on a Perkin-Elmer Lambda 950 UV–Vis-NIR spectrometer using BaSO<sub>4</sub> as a reference material within a range of 300–800 cm<sup>-1</sup>. X-ray photoelectron spectroscopy (XPS) was recorded on a Thermo Scientific ESCALAB 250 spectrometer using Al K $\alpha$  radiation (1486.6 eV). In order to compare all spectra recorded, the C 1s core level attributed to adventitious carbon present in the samples was used as a reference, whose binding energy was fixed at 284.6 eV. Peaks areas of Ni<sup>2+</sup> including satellites were fitted using a properly weighted sum of Lorentzian and Gaussian component curves after background subtraction according to Shirley.

Temperature-programmed reduction (TPR) measurements were carried out on an AutoChem II 2920 instrument. The H<sub>2</sub>-TPR was performed by passing 10 vol% H<sub>2</sub>/Ar (30 mL min<sup>-1</sup>) on 50 mg catalyst at a heating rate of 10 °C min<sup>-1</sup>. Firstly, samples were pretreated under O<sub>2</sub> atmosphere at 300 °C for 30 min and purged with Ar atmosphere at 300 °C for 30 min. Then the system was cooled down to ambient temperature under Ar atmosphere. The effluents were monitored by a thermal conductivity detector (TCD).

## 2.3. Catalytic activity test

CO<sub>2</sub> methanation catalytic activity tests were carried out in a continuous fixed-bed flow reactor under atmospheric pressure from 300 to 550 °C. The reaction was started by using 0.1 g catalyst mixed with 0.5 g quartz with similar sizes (40–60 mesh) in a space velocity of 40,000 mL h<sup>-1</sup> g<sup>-1</sup><sub>cat</sub>, and the gas composition is as follows: 72 vol% H<sub>2</sub>, 18 vol% CO<sub>2</sub> and 10 vol% N<sub>2</sub>, with a flow rate of 67.0 mL min<sup>-1</sup>. Prior to activity test, catalysts were pre-reduced at 750 °C in 75 vol% H<sub>2</sub>/N<sub>2</sub> (50 mL min<sup>-1</sup>) for 1.5 h, and then cooled down to 300 °C purging with N<sub>2</sub>. The effluents were analyzed online by gas chromatograph (Shimadzu GC-2014C) equipped with FID and TCD.



Fig. 1. XRD patterns of the as-prepared NiO/Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> catalysts calcined at 800 °C (a) and followed by reduction at 750 °C for 1.5 h (b).

Download English Version:

https://daneshyari.com/en/article/7832758

Download Persian Version:

https://daneshyari.com/article/7832758

Daneshyari.com