FISEVIER

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Long-term stability of photodetectors based on graphene field-effect transistors encapsulated with Si₃N₄ layers

Fang Su^{a,1}, Zhaohao Zhang^{b,1}, Shasha Li^a, Peian Li^a, Tao Deng^{a,*}

- ^a School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
- b Key Laboratory of Microelectronics Devices & Integrated Technology, IC Advanced Process R&D Center, Institute of Microelectronics of Chinese Academy of Sciences (IMECAS), 100029 Beijing, China

ARTICLE INFO

Keywords: Graphene FET Photodetector Si_3N_4 Long-term stability

ABSTRACT

Graphene photodetectors have drawn a lot of interest due to their superior properties. For entering real applications, the existing open-face graphene photodetectors need to be properly protected to obtain long term stability. Here we demonstrate a facile method to obtain air-stable graphene photodetectors by directly depositing Si_3N_4 layer on the surface of buried-gate graphene field-effect transistors (GFETs). The electrical and photoelectrical properties of the Si_3N_4 -encapsulated GFETs were carefully investigated and compared with that of the reference open-face GFETs. A photoresponsivity of 6.3 mA/W was obtained under a gate bias of 6 V, which was over 4 times higher than the photoresponsivities of typical back-gated GFET photodetectors under gate biases up to 80 V. Furthermore, the Si_3N_4 -encapsulated GFET photodetectors demonstrated good stability for several months.

1. Introduction

Graphene is one of the most promising materials for high-performance photodetectors. The unique gapless bandstructure of graphene enables photodetection from ultraviolet to terahertz spectral regimes [1,2]. Besides, graphene demonstrates ultrafast carrier dynamics [3,4], wave-independent absorption [1,5,6], photocarrier multiplication [7–9] and tunable optical properties via electrostatic doping [10,11]. Most of the research work on graphene-based photodetectors fucuses on increasing the responsivity of the devices, accelerating their response speed and extending their operation wavelength range [12-16]. However, there are few reports about the long term stability and robustness of these devices, which are mandatory for practical applications. Openface graphene devices are very sensitive to environmental factors such as H₂O, O₂ and impurity particles, which always cause unintentional ptype doping of graphene [17,18] and dramatic changes of electrical resistances [19]. Therefore, it is crucial to isolate graphene from the surrounding environment.

A simple method to improve the stability of graphene devices is to encapsulate them with a protective layer. There have been some reports on encapsulating graphene devices using titanium (Ti) [20], pentacene [21], amine based self-assembled monolayers [22], plasma-enhanced chemical vapor deposited (PECVD) grown $\mathrm{Si}_3\mathrm{N}_4$ [23–25], $\mathrm{Al}_2\mathrm{O}_3$ [26],

In this paper, a buried-gate GFET-based photodetector encapsulated with $\mathrm{Si}_3\mathrm{N}_4$ layers was demonstrated. The electric and photoelectrical properties of the GFETs before and after the $\mathrm{Si}_3\mathrm{N}_4$ depositing process were investigated and compared with each other. Furthermore, the long-term stability of the $\mathrm{Si}_3\mathrm{N}_4$ -encapsulated GFETs was tested and compared with that of the reference open-face GFETs.

2. Experiments

The fabrication process of the graphene field effect transistors (GFETs) encapsulated with silicon nitride (Si_3N_4) layers is shown in Fig. 1. Firstly, a layer of Si_3N_4 with the thickness of 200 nm was deposited on a 500- μ m-thick silicon wafer by plasma enhanced chemical

E-mail address: dengtao@bjtu.edu.cn (T. Deng).

and BN [19,27]. Compared with other materials, Si_3N_4 has some outstanding properties. Firstly, Si_3N_4 has ultra-low loss and broad transparency [28]. Secondly, Si_3N_4 offers efficient chemical protection over diverse gases and liquids, such as O_2 , H_2O [25] even coffee [23], and robust mechanical protection against impacts [23]. Thirdly, Si_3N_4 can cause an effective n-type doping of graphene, improving the electric properties of graphene devices [20,24,25]. Last but not least, the Si_3N_4 depositing process is compatible with the conventional integrated circuit (IC) technology. Thus, Si_3N_4 is an ideal material to encapsulate and protect graphene photodetectors.

^{*} Corresponding author.

¹ These authors contributed equally.

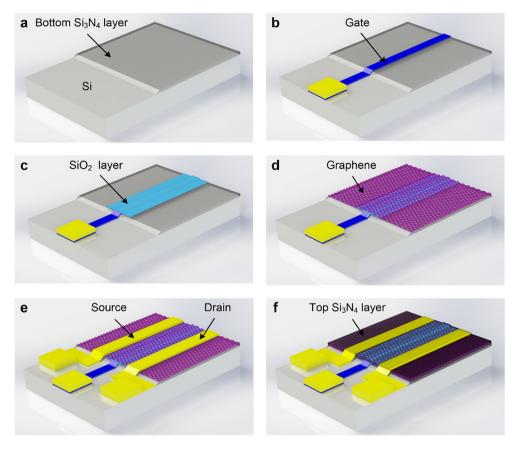


Fig. 1. Schematic of the process for the fabrication of GFETs encapsulated with $\mathrm{Si}_3\mathrm{N}_4$ protective layers. (a) Depositing the bottom $\mathrm{Si}_3\mathrm{N}_4$ protective layer. (b) Sputtering the buried Cr/Pt gate electrode. (c) Depositing the SiO_2 dielectric layer. (d) Transferring and patterning monolayer graphene. (e) Evaporating the Cr/Au source and drain electrodes. (f) Depositing the top $\mathrm{Si}_3\mathrm{N}_4$ protective layer.

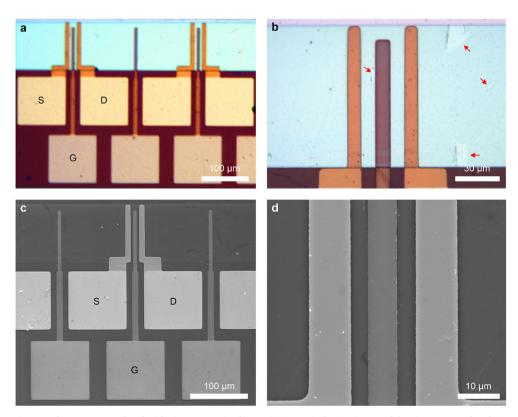


Fig. 2. Optical and SEM images of GFETs encapsulated with Si_3N_4 protective layers. (a) An optical micro image of the Si_3N_4 -encapsulated GFETs and (b) the zoomedin details of the graphene conductive channel. (c) A SEM image of the Si_3N_4 -encapsulated GFETs and (d) the zoomed-in details of the graphene conductive channel.

Download English Version:

https://daneshyari.com/en/article/7832777

Download Persian Version:

https://daneshyari.com/article/7832777

<u>Daneshyari.com</u>