Accepted Manuscript

Full Length Article

Li decorated Be₃C₂ as light-weight host material for reversible hydrogen storage

Long Chen, Xianfei Chen, Jia Liu, Pan Xiang, Fuyu Zhuge, Beibei Xiao

PII: S0169-4332(18)32027-0

DOI: https://doi.org/10.1016/j.apsusc.2018.07.131

Reference: APSUSC 39946

To appear in: Applied Surface Science

Received Date: 30 April 2018 Revised Date: 17 June 2018 Accepted Date: 19 July 2018

Please cite this article as: L. Chen, X. Chen, J. Liu, P. Xiang, F. Zhuge, B. Xiao, Li decorated Be_3C_2 as light-weight host material for reversible hydrogen storage, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc. 2018.07.131

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Li decorated Be_3C_2 as light-weight host material for reversible $\label{eq:hydrogen} \mbox{hydrogen storage}$

Long Chen^a, Xianfei Chen^{a,b*}, Jia Liu^a, Pan Xiang^a, Fuyu, Zhuge^a, Beibei Xiao^c

Abstract

Deficiency of appropriate host materials with high gravimetric density for hydrogen storage impedes the development of hydrogen economy and its downstream application, i.e., hydrogen fuel battery. Within the framework of density functional theory, we investigate systematically the performance of Li decorated Be₃C₂ for hydrogen adsorption and reversible storage. We find that Li atoms forms strong bond with the light-weight Be₃C₂ substrate without the issue of agglomeration, where dispersive decoration of Li on Be₃C₂ is calculated to be more energetically than Li metallic clusters. As for Li doped Be₃C₂ system, a maximum gravimetric hydrogen density of 10.79 wt% could be reached. Such high-capacity benefits from the light-weight of the host and its strong binding to H₂ molecules, in which both polarization and electronic hybridization mechanism play a significant role. Hydrogen storage under different pressure and temperature has also been discussed based on thermodynamic analysis and a practical capacity of 9.27 wt% could be expected under more realistic operation of hydrogen fuel battery (stored at 30 atm/25 °C and released at 3 atm/100 °C). Favorable hydrogen adsorption capability and desired storage/release dynamic performance endows Li decorated Be₃C₂ with promising applications in hydrogen energy storage field.

Key words: Hydrogen host material, Be₃C₂, Lithium decoration, First-principle

^a College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

^b Postdoctoral Innovation Practice Base, Sichuan Konkasnow New Material Co., Ltd., Yaan 625400, China

^c School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

^{*} Corresponding author. Email: chenxianfei2014@cdut.edu.cn

Download English Version:

https://daneshyari.com/en/article/7832789

Download Persian Version:

https://daneshyari.com/article/7832789

Daneshyari.com