Accepted Manuscript

Full Length Article

Waveguide coupled surface plasmon resonance based Electro optic modulation in SBN thin films

Surbhi Gupta, Ayushi Paliwal, Vinay Gupta, Monika Tomar

PII: S0169-4332(18)31914-7

DOI: https://doi.org/10.1016/j.apsusc.2018.07.039

Reference: APSUSC 39854

To appear in: Applied Surface Science

Received Date: 21 May 2018 Revised Date: 23 June 2018 Accepted Date: 5 July 2018

Please cite this article as: S. Gupta, A. Paliwal, V. Gupta, M. Tomar, Waveguide coupled surface plasmon resonance based Electro optic modulation in SBN thin films, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.07.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Waveguide coupled surface plasmon resonance based Electro optic

modulation in SBN thin films

Surbhi Gupta, ¹ Ayushi Paliwal, ¹ Vinay Gupta, ¹ Monika Tomar^{2,*}

¹Department of Physics & Astrophysics, University of Delhi, Delhi, India

²Department of Physics, Miranda House, University of Delhi, Delhi, India

*Corresponding Author Email-id: monikatomar@gmail.com

Abstract

Modulation of light intensity utilizing waveguide coupled Surface Plasmon Resonance

(WCSPR) technique at low driving voltage has been demonstrated in the present work. The

high value of coefficient of Strontium electro optic Barium Niobate

 $Sr_{0.6}Ba_{0.4}Nb_2O_6(SBN60)$ makes it a promising material for the SPR based electro optic

modulators. Prism coupling technique has been utilized for the excitation of surface plasmons

in Strontium Barium Niobate (SBN) thin film in Otto configuration. Modulation of about 36%

is observed due to a significant change in the refractive index of SBN60 thin film on

application of electric field of 200kV/cm. The transient response of change in reflectivity of

the WCSPR system with electric field indicates the dynamic change of polarization state of

SBN thin film.

Keywords: WCSPR, Modulation, SBN, Electro optic

Download English Version:

https://daneshyari.com/en/article/7832812

Download Persian Version:

https://daneshyari.com/article/7832812

<u>Daneshyari.com</u>