Accepted Manuscript

Full Length Article

The effect of surface texture on the oxidation behaviour of polycrystalline Fe-Cr

G. Zijlstra, L.T.H. de Jeer, V. Ocelík, J.Th.M. De Hosson

PII: S0169-4332(18)32154-8

DOI: https://doi.org/10.1016/j.apsusc.2018.08.036

Reference: APSUSC 40073

To appear in: Applied Surface Science

Received Date: 20 April 2018 Revised Date: 27 July 2018 Accepted Date: 4 August 2018

Please cite this article as: G. Zijlstra, L.T.H. de Jeer, V. Ocelík, J.Th.M. De Hosson, The effect of surface texture on the oxidation behaviour of polycrystalline Fe-Cr, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.08.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The effect of surface texture on the oxidation behaviour of polycrystalline Fe-Cr

G. Zijlstra, L.T.H. de Jeer, V. Ocelík, J.Th.M. De Hosson*

Department of Applied Physics, Materials Innovation Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Abstract

Grain-direction dependent oxidation at the surface of polycrystalline Fe-Cr steel is not well understood, as most of the described systems in literature focus on single crystals of either Fe or Cr. We found through electron backscatter diffraction that surface oxidation in air at temperatures between $260-450\,^{\circ}$ C depends severely on grain orientations at the outer surface. Subsequently electron microscopy was combined with X-ray photoelectron spectroscopy (XPS) and X-ray Diffraction (XRD) to characterize the oxide film further in detail. In particular we have observed the following sequence in oxidation rate of crystal planes parallel to the surface for Fe-Cr steel, $\{001\}$ < $\{111\}$ & $\{101\}$, which was not reported in literature before.

Keywords: Steel, Iron, Chromium, XRD, Atmospheric Corrosion, EBSD

^{*}corresponding author: jeff th. m. dehosson: e-mail j.t.m.de.hosson@rug.nl

Download English Version:

https://daneshyari.com/en/article/7832844

Download Persian Version:

https://daneshyari.com/article/7832844

<u>Daneshyari.com</u>