

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

WO_3 nanotubes – SnO_2 nanoparticles heterointerfaces for ultrasensitive and selective NO_2 detections

Jirasak Sukunta^{a,b}, Anurat Wisitsoraat^{c,d,e}, Adisorn Tuantranont^{c,f}, Sukon Phanichphant^c, Chaikarn Liewhiran^{a,c,g,*}

^a Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^b Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand

^c Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200,

Thailand

^d Carbon-based Devices and Nanoelectronics Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand

e Department of Common and Graduate Studies, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12120, Thailand

^f Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand

^g Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Keywords: Heterostructures WO₃ nanotubes SnO₂ nanoparticles Flame spray pyrolysis Gas sensor Nitrogen dioxide

ABSTRACT

In this work, the SnO₂ nanoparticles – WO₃ nanotubes heterostructures are reported for the first time and systematically investigated for NO₂ detection. The hybrid SnO₂ – WO₃ sensing films were fabricated by thermal decomposition of WS₂ nanotubes loaded flame-spray-made SnO₂ nanoparticles with varying WS₂ contents (0.5–10 wt%). Characterizations by X-ray diffraction, electron microscopy, thermogravimetric, differential thermal analysis and X-ray photoelectron spectroscopy indicated that hexagonal WS₂ nanotubes were completely converted to orthorhombic WO₃ nanotubes and well-dispersed within polycrystalline tetragonal SnO₂ nanoparticles. The gas-sensing results revealed that the addition of WO₃ nanotubes to SnO₂ nanoparticles led to the substantial enhancement of sensor response towards NO₂. Specifically, the 5 wt% WO₃ loaded SnO₂ sensor exhibited an ultra-high response of ~12,800 to 5 ppm NO₂ with good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the WO₃-loaded SnO₂ sensor presented high NO₂ selectivity against CH₄, NO, C₂H₅OH, C₃H₆O, H₂S and H₂. The enhanced NO₂ sensing properties may be ascribed to the formation of WO₃ nanotubes/SnO₂ nanoparticles. Therefore, SnO₂ nanoparticles – WO₃ nanotubes composite structure prepared by flame spray pyrolysis and thermal decomposition is highly promising for highly sensitive and selective NO₂-sensing applications.

1. Introduction

Metal oxide nanostructured composites have been extensively studied for gas-sensing applications because of their superior functional properties compared with each of their constituents [1]. Among various metal oxide nanocomposite, tin oxide $(SnO_2)/tungsten (WO_3)$ hybrid structures have been of high interest because SnO_2 and WO_3 are among the most widely-used gas-sensing materials due to their diverse responses towards various oxidizing and reducing gas, moderate electrical resistivity, remarkable catalytic activities high stability and low cost. and unique gas-sensing behaviors [2–13]. In general, the gassensing performances of SnO₂/WO₃ composites depend substantially on the structures of both constituents, the organization of hybrid structure and the preparation methods. Recently, various SnO₂/WO₃ composite structures including SnO₂ nanoparticles/WO₃ nanoparticles, SnO₂ nanoparticles/WO₃ nanolamellae, SnO₂ nanoparticles/WO₃ nanorods, SnO₂ nanoparticles/WO₃ microspheres, SnO₂ nanoparticles/WO₃ hollow nanospheres, SnO₂ nanoparticles/WO₃ thin film, SnO₂ nanofilms/WO₃ nanoclusters, SnO₂/WO₃ bilayer thin films, WO₃ thin film/ SnO₂ inverse opal nanolayer, SnO₂/WO₃ core-shell nanoclusters have been prepared by several physical and chemical methods [14–27]. Recently, SnO₂/WO₃ nanocomposites produced by different methods

https://doi.org/10.1016/j.apsusc.2018.07.096 Received 9 April 2018; Accepted 12 July 2018 0169-4332/ © 2018 Published by Elsevier B.V.

^{*} Corresponding author at: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. *E-mail address*: cliewhiran@gmail.com (C. Liewhiran).

Table 1

Performances of WO₃-SnO₂ nanocomposites and highly sensitive NO₂ sensors prepared by various physical and chemical methods.

Authors	Sensing materials	Methods	Sensing performances		
			Gas concentration	Response, S	Temperature
J. Kaur et al. (2007) [16]	Undoped SnO_2 WO ₃ -doped SnO_2 particulate thin film	Sol-gel and spin coating techniques	500 ppm NO_2	~12 ~33360	150 °C
K. Shimanoe et al. (2009) [17]	WO ₃ lamellae -SnO ₂ nanoparticles	Sol-hydrothermal and screen-printing	1 ppm NO ₂	~ 540	400 °C
S. Bai et al. (2010) [18]	WO ₃ -doped SnO ₂ nanoparticles	Sol-precipitation	200 ppm NO_2	~186	200 °C
S.B. Dhannasare et al. (2012) [19]	SnO ₂ -doped WO ₃ nanoparticulate film	Screen printing	300 ppm CO ₂	~6	RT ^a
Y.Gui et al. (2013) [20]	WO3 microspheres /SnO2 nanoparticles	Microwave refluxing	10 ppm H ₂ S	~85.2	90 °C
			30 ppm NO _x	~95.6	350 °C
A. Sharma et al. (2013) [21]	WO_3 nanoclusters/ SnO_2 thin film	RF sputtering and pulsed laser deposition	10 ppm NO_2	$\sim 5.4 \times 10^4$	100 °C
HY. Li et al. (2015) [22]	Pd-decorated WO ₃ /SnO ₂	Screen printing and drop coating	200 ppm NO	~ 38	400 °C
A.A. Najim et al. (2016) [23]	SnO ₂ -doped WO ₃ thin film	Pulsed laser deposition	200 ppm NO_2	~1.96	25 °C
V.K. Tomer et al. (2016) [24]	WO ₃ -doped SnO ₂ mesoporous film	Hydrothermal and nanocasting	50 ppm C ₆ H ₁₅ N	~87	220 °C
N.V. Toan et al. (2017) [25]	SnO ₂ -WO ₃ bilayer nanofilms	Sputtering	250 ppm NH ₃	~7.1	300 °C
Z. Zhang et al. (2017) [26]	WO3-SnO2 dual-layer thin films	Sol-gel process	1000 ppm H ₂	~29.3	225 °C
V.K. Tomer et al. (2017) [27]	Indium-loaded WO3-doped SnO2 mesoporous	Nanocasting	50 ppm C ₃ H ₆ O	~31.3	200 °C
	film				
Y-J Choi et al. (2008) [28]	SnO ₂ nanowires	Thermal evaporation	5 ppm NO ₂	~180	200 °C
J. Zhang et al. (2009) [29]	SnO ₂ Hollow sphere	Carbon microspheres template	50 ppm NO ₂	~2470	160 °C
N.G. Cho et al. (2011) [30]	SnO ₂ hollow nanofibers	RF-sputtering	2 ppm NO ₂	~81.4	300 °C
J. Zeng et al. (2012) [31]	Porous WO ₃	Anodic oxidation	5 ppm NO ₂	~100	150 °C
S. An et al. (2014) [32]	WO ₃ nanotubes	TeO ₂ nanowire templates	5 ppm NO ₂	~7.8	300 °C
V. Srivastava et al. (2016) [33]	SnO ₂	Sol-gel process	20 ppm NO ₂	~2.0	25 °C
	graphene/SnO ₂			~9.6	
	MWCNT/SnO ₂			~4.5	
D. Zhang et al. (2016) [34]	SnO ₂ -rGO ^a hybrid composite	Hydrothermal	1 ppm NO ₂	~1.19	25 °C
S.S. Shendage et al. (2017) [10]	WO ₃ nanoplates	Deposition on glass substrate	5 ppm NO ₂	~10	100 °C
D. Gu et al. (2017) [35]	SnO ₂ /SnS ₂	In-situ high-temperature oxidation	8 ppm NO ₂	~ 5.3	80 °C
This work	WO ₃ -loaded SnO ₂	FSP ^a and spin coating	5 ppm NO ₂	$\sim\!1.28\times10^4$	150 °C

^a Dry air was used as a carrier gas in all reports. FSP = Flame Spray Pyrolysis, rGO = Reduced Graphene Oxide, RT = Room Temperature.

have been characterized for gas-sensing applications as summarized in Table 1.

Firstly, 5 wt% WO₃-doped SnO₂ nanoparticulate thin films fabricated by sol-gel and spin-coating processes offered a large response of 33,360 to 500 ppm NO₂ at 150 °C, which was more than three orders of magnitude larger than undoped ones [16]. Also, WO₃ lamellae decorated with SnO₂ nanoparticles fabricated by sol-hydrothermal and screen-printing processes displayed a high response of 540 to 1 ppm Nitrogen dioxide (NO₂) at 400 °C [17]. Similarly, WO₃-doped SnO₂ nanoparticles synthesized by sol-coprecipitation offered a good response of 186-200 ppm NO2 at 200 °C [18]. Furthermore, SnO2-doped WO3 nanoparticulate film made by screen printing yielded a response of 6-300 ppm CO₂ at room temperature (25 °C) [19]. Additionally, WO₃ microspheres aggregated with SnO₂ nanoparticles by a microwave refluxing method gave decent responses of 95.6 to 30 ppm NO_x at 350 °C and 85.2 to 10 ppm H₂S at 90 °C [20]. Likewise, WO₃ nanoclusters deposited on sputtered SnO₂ thin film by pulsed laser deposition (PLD) exhibited a large response of 5.4×10^4 to 10 ppm NO₂ at 100 °C [21]. Further, Pd-decorated WO3/SnO2 dual-layer particulate thick films demonstrated an enhanced response of 38-200 ppm NO at 400 °C [22]. Moreover, SnO₂-doped WO₃ thin films manufactured by PLD showed a good response of 1.94 to 200 ppm NO₂ at room temperature [23]. In another study, WO3-doped SnO2 mesoporous film prepared by hydrothermal and nanocasting yielded a good response of 87 to 50 ppm C₆H₁₅N at 220 °C [24]. From another report, SnO₂-WO₃ bilayer sputtered nanofilms provided a response of 7.1 to 250 ppm NH₃ at 300 °C [25]. Besides, WO₃ – SnO₂ dual-layer sol-gel thin films exhibited a response of 29.3 to 1000 ppm H₂ at 225 °C [26]. Recently, In-loaded WO3-doped SnO2 presented a response of 31.3 upon exposure to 50 ppm C₃H₆O at 200 °C [27].

According to these reports, the gas-sensing performances of WO_3 -SnO₂ nanocomposites depend greatly on the material structures and preparation method. In addition, the gas sensitivity and selectivity are significantly affected by the relative WO_3 /SnO₂ composition and

the majority of WO₃–SnO₂ sensors are selective to NO₂. NO₂ is a highly toxic air pollutant, causing various health effects including nausea, irritation of respiratory pathways, asthma, asphyxiation and death [36]. Moreover, NO₂ can cause some environmental problems such as acid rain and photochemical smog [21,10]. Recently, NO₂ detection has become increasingly important due to increasing NO₂ productions by various industrial and natural processes. World's health organization sets the threshold limit value (TLV) of 5 ppm for short-term NO₂ exposure while United States Environmental Protection Agency defines TLV of 0.1 ppm for long-term environmental NO₂ exposure [37]. Thus, highly sensitive and selective NO₂ sensors operable at low temperatures will be required for effective NO₂ monitoring in health and environmental protections.

Consequently, it is compelling to further enhance the NO₂-sensing performances of WO3-SnO2 sensors by devising novel WO3-SnO2 nanostructures that can offer a large number of active surface sites. Theoretically, low-dimensional (0D and 1D) nanostructures exhibit larger effective surface area than higher dimensional (2D and 3D) ones. However, the 0D-0D combination (nanoparticles-nanoparticles) usually display low effective surface area and limited gas-sensing performances due to agglomeration and coalescence [38]. One-dimensional nanostructures particularly nanotubes are less prone to aggregation [39]. Hence, 0D-1D composites of SnO2-WO3 should be highly promising structures for gas sensing. Nevertheless, 0D-1D composite structures of SnO₂-WO₃ are still not extensively developed and applied for gas sensing. Specifically, SnO₂ nanoparticles-WO₃ nanotubes composite structure has never been fabricated by any production method. It is thus compelling to synthesize this interesting structure for gas-sensing applications.

In this work, SnO_2 nanoparticles– WO_3 nanotubes composite structure is fabricated for the first time and demonstrated for ultrasensitive NO_2 detection. The hybrid nanostructures were fabricated by thermal oxidation of SnO_2 nanoparticles loaded with WS_2 nanotubes. SnO_2 nanoparticles and WS_2 nanotubes were synthesized by flame spray Download English Version:

https://daneshyari.com/en/article/7832848

Download Persian Version:

https://daneshyari.com/article/7832848

Daneshyari.com