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a b s t r a c t

Different plastic collapse modes may have different effects on the overall behaviour and load-bearing
capacity of an elastic–plastic structure subjected to variable loads, and they may even be determined by
different material plastic constants (for general plastic hardening materials). Both lower bound static and
upper bound reduced kinematic approaches have been implemented with appropriate finite element
realizations and mathematical programming techniques to study the nonshakedown modes for elastic
plastic bodies under cyclic loads. For sufficiently complex structure and loading program, it has been
firstly demonstrated that an elastic–plastic body may fail by rotating plasticity collapse rather than the
simpler alternating plasticity one among other possible modes. That and other results also lead to in-
teresting problems for further studies.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An elastic–plastic structure subjected to variable and cyclic
loads, after possible initial limited plastic deformations, may
eventually shake down to some residual stress state, fromwhich it
would respond elastically to the loads afterwards. Otherwise, the
structure should collapse instantaneously, incrementally, or fail by
alternating plasticity (the phrase “alternating plasticity” shall be
substituted by the more general one “bounded cyclic plasticity” –
as a result of this study). Shakedown limits may be determined
through an incremental analysis following a particular loading
history, or path-independently via the shakedown kinematic
(upper bound) or static (lower bound) theorems [1–8,10–13,15,17–
24].

Because of the complexity of the shakedown theorems, which
are the nonlinear optimization problems, methods have been de-
veloped to study the separated nonshakedown collapse modes
such as the instantaneous (plastic limit), incremental plasticity,
and alternating plasticity ones [5,7–10,16,24-26,28,32]. Separation
of collapse modes does not only simplify the shakedown analysis.
It is necessary because different collapse modes have different

effects on the load-bearing capacity of the structures [9], and they
may be determined by different material plastic constants [12–15].
Semi-analytical methods have been developed to derive from the
upper and lower bound shakedown theorems simple estimates of
the nonshakedown loads. However for generally complex struc-
tures under complicated loading programs one needs efficient
numerical methods to solve the respective nonlinear program-
ming problems.

For engineering applications, the shakedown theorems lead to
large-scale nonlinear convex optimization problems with large
numbers of variables and constraints. Direct iterative optimization
algorithms have been developed to provide solution of such the
non-linear programming [35,42,47]. However, the primal-dual
interior-point method has been found to be more efficient and
robust [33,38–41,45]. The algorithm has been extended to both
static and kinematic shakedown analysis problems
[18,23,31,44,46]. Taking advantages of the algorithm, Tran et al.
[24] have developed an effective computational method for kine-
matic separated shakedown analysis, in which the trial fields ob-
tained from the plastic limit analysis problems corresponding to
possible external load combinations were used to solve the in-
cremental plasticity mode. In this paper, the algorithm will be
further developed for static separated shakedown analysis. The
non-linear yield criterion is formulated as a quadratic conic con-
straint, making sure that the obtained optimization problem can
be solved using highly efficient solvers.
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For most problems considered in the literature, the non-sha-
kedown limit curve is the lower envelope of the incremental col-
lapse and bounded cyclic (or alternating) plasticity collapse curves.
The computation of the bounded cyclic plasticity limit should in-
volve elastic stresses only. However, general formulation applied
to compute the alternating plasticity limit for various yield criteria
is not available, but only for plane problems governed by von
Mises criterion [16]. In this paper, an analytical formulation for
determination of the alternating plasticity limit will be statically
derived for different non-linear yield criteria which can be cast in
the form of L2 norm, such as the 2D and 3D Drucker–Prager, Mohr–
Coulomb and Nielsen criteria [37], and hence enabling broader
applications of the separated shakedown analysis. Moreover, the
rotating plasticity, which in the mathematical sense is a general-
ization of the alternating plasticity collapse [12,13,15], will also be
derived analytically for general time-independent stress center,
and yield criteria. In this paper, it has been firstly demonstrated
that an elastic–plastic body may fail by rotating plasticity collapse
rather than the simpler alternating plasticity one among other
possible modes. The rotating plasticity mode is the imaginary
mode, in which plastic deformations do not increase unrest-
rictively in magnitudes. The plastic strain tensor change the di-
rections in the strain space during the process (rotate).

The layout of the paper is as follows. In the next section some
theoretical results from both kinematic and static shakedown
theorems are resumed, with some particular questions raised. In
Section 3 the discrete formulations of the shakedown problems
and respective solution methods are presented, which are fol-
lowed by particular numerical implementations in Section 4.
Discussions on the obtained results and possible further studies
are made in the last section.

2. Shakedown theorems and collapse modes

2.1. Kinematic upper bound approach

Let σ ( )tx,e denote the fictitious elastic stress response of the
body V to external agencies over a period of time
( ∈ ∈ [ ])V t Tx , 0, under the assumption of perfectly elastic beha-
viour, called a loading process (history). The actions of all kinds of
external agencies upon V can be expressed explicitly through re. At
every point ∈ Vx , the elastic stress response σ ( )tx,e is confined to
a bounded time-independent domain with prescribed limits in the
stress space, called a local loading domain x. As a field over V,
σ ( )tx,e belongs to the time-independent global loading domain :

{ }σ σ= ( ) ∈ ∈ ∈ ( )⎡⎣ ⎤⎦t V t Tx x, , , 0, 1e e
x

Shakedown of a body in means it shakes down for all possible
loading histories σ ( ) ∈tx,e .

Let be the set of admissible compatible-end-cycle (devia-
toric) plastic strain rate fields ep over time cycles ≤ ≤t T0 :

∫ε= { | = ∈ } ( )dte e 2
p p

T
p

0

where is the set of strain fields that are both deviatoric and
compatible on V;
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3
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0
0

is a subset of , which contains the plastic strain rate fields that
vanish at the end of the cycle.

Let ks be the shakedown safety factor: at >k 1s the structure
will shake down, while it will not at <k 1s , and ks¼1 defines the
boundary of the shakedown domain. We consider, generally, the

elastic–plastic nonlinear kinematic hardening materials that sa-
tisfy the positive hysteresis postulate and are bounded by the in-
itial yield stress σY

I and ultimate yield stress σY
U [12,13,15]. Then,

the shakedown kinematic theorem can be stated as the optimi-
zation problem:
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σ( ) =D e e:p p is the dissipation function determined by the yield
stress sY and the respective yield criterion; e.g. for a Mises material
we have

σ( ) = ( ) ( )D e e e2/3 : 7p
Y

p p 1/2

( )D eu
p and ( )D ei

p are the particular expressions of ( )D ep with the
ultimate yield stress and initial yield stress taking the place of sY,
respectively.

For more-convenient numerical implementations, the for-
mulations (4)–(6) can be represented alternatively as

= { ¯ ¯} ( )k U Cmin , , 8s

where
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[here the implicit condition that the denominator ∫ ∫ σdt dVe:
T
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0

be positive is assumed, otherwise the expression (·)inf should be
trivial −∞, which is physically meaningless],
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(with the implicit condition that the denominator ∫ σdt dVe:
T e p

0

be positive). At ¯ = < ¯C U1 (or = >C U1 ) the elastic plastic body
should fail by bounded cyclic plasticity, while at ¯ = < ¯U C1 (or

= >U C1 ) it is expected to collapse incrementally. Eq. (9) [or (5)]
is just the expression of Koiter's shakedown kinematic theorem for
elastic perfectly plastic bodies with the yield stress σ σ=Y Y

U; and it
involves generally global compatible-end-cycle plastic strain rate
fields ∈ep . In the meantime the bounded cyclic plasticity mode
(10) [or (6)] with the yield stress σ σ=Y Y

I is strictly local and ap-
pears simpler. When σ σ=Y

U
Y
I the specific case of elastic-perfectly

plastic material is obtained.
From the kinematic theorem (8)–(10) the following much

simpler upper bound reduced kinematic formulation can be de-
duced [8,11–13,15,24]

≤ = {¯ ¯} ( )k k I Amin , , 11s sA

where
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