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a b s t r a c t

The paper presents a theory of inelastic column buckling which is consistent with the principles of
plastic flow theory. The theory accounts for flexural, torsional and flexural-torsional modes. While the
use of the tangent modulus to describe inelastic flexural buckling has been common place for a long time,
efforts to comprehensively unite the torsional and flexural-torsional modes with the principles of plastic
flow theory have so far been hampered by the ‘plastic buckling paradox’. New theoretical developments
presented in this paper provide a way to achieve this goal. The solution hinges on the derivation of the
inelastic shear stiffness while considering an infinitesimal solid element embedded within the column at
a stage immediately past the point of buckling.

The proposed inelastic column theory is verified against selected experimental data pertaining to
aluminium and stainless steel columns of various cross-sections. Particular attention is paid to the tor-
sional buckling problem of the inelastic cruciform section column.

& 2016 Elsevier Ltd. All rights reserved.

1. Background

With respect to inelastic flexural buckling of columns, Engesser
[9] was the first to propose the use of the tangent modulus Et to
predict the buckling load of an initially perfectly straight, inelastic
column by modifying Euler's differential equation as follows:
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where u is the lateral column deflection, P is the axial compressive
load and I is the second moment of area of the cross-section about
the principal axis about which bending takes place. Eq. (1) results
in an expression for the column buckling load:
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where Le is the effective length, dependent on the boundary
conditions.

While straightforward, Engesser's approach received criticism
from Considère [7] who argued that, as the column starts to bend
out laterally, elastic unloading takes place on the convex side of
bending and that consequently, the bending stiffness is not simply
determined by EtI. Engesser [10] replied by proposing his “double-
modulus” or “reduced modulus” theory, where:
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Ic and It are the second moments of area of the parts of the
cross-section subjected to compression and tension with respect
to the neutral axis, respectively, and E0 is the initial elastic
modulus.

It soon became apparent that Eq. (2) showed much better
agreement with the experiment than Eq. (3), which consistently
led to overestimates. Shanley [32] shed light on this seeming
paradox by pointing out that Eq. (2) does indeed constitute the
buckling load of the column since it indicates the point of bi-
furcation above which the column cannot be in a state of stable
equilibrium while remaining straight. Moreover, lateral buckling
does not take place under a constant load, but elastic unloading on
the convex side instead results in postbuckling capacity.

A realistic theory describing buckling of inelastic columns in-
volving torsion, which may either occur as pure torsional buckling
or combined flexural and torsional buckling, based on the princi-
ples of plastic flow theory has not yet been presented. The chal-
lenge thereby lies in modelling the relationship between incre-
ments of shear stress and shear strain at the onset of buckling. A
previous interpretation of plastic flow theory [16,2,23] has sug-
gested that the increments of shear stress and shear strain remain
linked through the elastic modulus E0 at the onset of buckling and
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that, therefore, the torsional resistance remains unaffected by the
axially induced plasticity. This conclusion, however, stands in clear
contradiction with experimental observations, as demonstrated
by, among others, [1], Onat and Drucker [25], [2,16,23,]. This
“plastic buckling paradox”, as it is often named in literature, is
particularly exemplified by the torsional buckling problem of the
inelastic cruciform column, since this particular cross-section re-
lies on the shear stresses resulting from pure torsion to a much
larger extent than on the (negligible) longitudinal warping stresses
in its buckling resistance. Experiments on cruciform sections have
indicated that plastic flow theory substantially overestimates the
buckling load. On the other hand, buckling theories based on
plastic deformation theory, which is generally considered flawed
and inferior in its concept to plastic flow theory, have so far yiel-
ded the better predictions in relation to column buckling problems
involving torsion. This is more generally true for inelastic bi-
furcation problems and this paradoxical issue continues to hamper
theoretical stability research, as demonstrated recently by, for in-
stance, Rønning et al. [29] for plates, Shamass et al. [31] for cy-
lindrical shells and Ruocco [30] for instabilities in thin-walled
elements in general. The plastic buckling paradox has also been
excellently illustrated for thick and thin plates under uniaxial,
biaxial and shear loading byWang and Tun Myint [38],, Wang et al.
[39] and Wang and Huang [40]. The problem also arises within the
context of Generalized Beam Theory (GBT), as demonstrated by
Gonçalves and Camotim [11]. The authors developed two GBT
formulations, incorporating either deformation theory or flow
theory. These new formulations were then applied to the cases of
simple plates under uniform compression and hat section beams
in uniform bending. It was concluded that the flow-based GBT
resulted in much higher predictions of the buckling stresses than
the deformation-based theory.

Interestingly, it has been observed Shamass et al. [31] that the
results of geometrically non-linear finite element analyses using
flow theory with an associated flow rule are unaffected by the
plastic buckling paradox. While no explanation has yet been pro-
vided as to why an incremental numerical approach remedies the
problem, a firm conclusion can be drawn from this observation,
namely that the plastic buckling paradox is not due to any in-
herent shortcomings or limitations of flow theory itself, but rather
a result of an incorrect application of its principles. This idea is
central to the theory proposed in this paper.

Onat and Drucker [25] demonstrated that the plastic buckling
paradox can be circumvented by incorporating imperfections into
the model and that even very small, inevitable imperfections have
a severe impact on the buckling load, reducing it to levels close to
those predicted by deformation theory. Hutchinson and Budiansky
[17] confirmed this finding for low strain-hardening metals.
However, they also demonstrated that for metals with significant
strain-hardening the imperfections have to be of such magnitude

that they can no longer be considered ‘small and inevitable’, thus
suggesting that Onat and Drucker's explanation is not entirely
satisfying.

The approach presented in this paper differs from the afore-
mentioned rationale in that a perfectly straight column is con-
sidered, without initial imperfections. Instead, the plastic buckling
paradox is resolved by deriving a relationship between shear
stress and shear strain increments at the onset of buckling, while
applying the plastic flow rule to a solid element in its shear de-
formed shape. The basic principles of plastic flow theory, however,
are retained.

2. Inelastic shear stiffness

An expression for the inelastic shear stiffness G1 of a non-linear
metal is first derived, accounting for the presence of a uniaxial
compressive stress. G1 will be used in the following paragraphs to
relate increments of shear stress and shear strain at the point of
column buckling. The derivation here presented is a generalized
and amended version of the one contained in Becque [4].

We consider the material stress-strain curve of a non-linear
metal, as determined from a uniaxial compression test (Fig. 1). It is
a generally accepted postulate of plasticity that an increment in
axial strain ε1̇ is composed of an reversible elastic component ε ̇ el1,
and an irreversible plastic component ε ̇ p1, :

ε ε ε̇ = ̇ + ̇ ( )5el p1 1, 1,

Eq. (5) can be written in terms of the increment in axial stress
σ1̇associated with ε1̇:
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where E0 is the elastic modulus, Et is the tangent modulus at the
relevant stress level and Ep relates the plastic stress and strain
increments. Thus:
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Plastic flow theory also dictates that the incremental plastic
strain in the perpendicular principal 2-direction is given by:

ε κε̇ = ̇ ( )8P P2, 1,

An associated flow rule is adopted, so that κ in Eq. (8) is de-
termined by the slope of the normal to the flow surface [8]. When
the von Mises surface is used (Fig. 2), κ amounts to �1/2 under
uniaxial compression. However, the calculations will carry a gen-
eral κ value to allow for possible plastic anisotropy in the material.

Fig. 3a depicts an infinitesimal element of material embedded

Fig. 1. Material stress–strain curve.
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