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A B S T R A C T

In this article, the optical properties of thin films of higher manganese silicide (HMS) systems, MnSiγ and (Mn,Fe)
Siγ, were investigated. Band structure calculations were performed using the Mn11Si19 and (Mn31/44Fe13/
44)11Si19 crystal structure models of HMS to predict the conduction types and band gaps of MnSiγ and
Mn0.7Fe0.3Siγ, respectively. Using a pulsed laser deposition method, p-type MnSiγ and n-type Mn0.7Fe0.3Siγ thin
films with a-axis orientation were grown on R-sapphire substrates. The measured direct band gaps were 0.81(1)
eV for the MnSiγ thin film and 0.83(2) eV for the Mn0.7Fe0.3Siγ thin film. These results demonstrate the potential
of (Mn,Fe)Siγ-based near-infrared absorption solar cells.

1. Introduction

Higher manganese silicide (HMS) has attracted attention as a
functional material for thermoelectric and optoelectronic devices [1–3].
There are several crystal structure models for HMS; Mn4Si7 [4],
Mn11Si19 [5], Mn15Si26 [6], Mn27Si47 [7] and MnSiγ [8]. The last model
is a (3+1)-dimensional crystal structure model which comprises the
other four three-dimensional crystal structure models. The γ value in
the chemical formula MnSiγ is the Si/Mn ratio in the Mn subsystem (i.e.,
the ratio of the c-axis length of the Mn subsystem to that of the Si
subsystem). It is known that HMS is a p-type semiconductor. Using the
three-dimensional crystal structure models, the band gap of HMS was
calculated to be 0.769 eV (Mn4Si7) and 0.78 eV (Mn11Si19, Mn15Si26 and
Mn27Si47) [9]. Thus, it is expected that HMS can be applied in near-
infrared (NIR) absorption solar cells. However, there have been various
reports on the band gap of HMS in the cases of bulk [10–12] and thin
films [13–17]; indirect and direct band gaps ranging from 0.4 eV to
0.96 eV have been reported.

Recently, we successfully fabricated highly-oriented MnSiγ thin
films on R-sapphire substrates using a pulsed laser deposition method
[18]. The orientation relationship was found to be MnSiγ (1 0 0 0)
[0 0 1 0]//Sapphire (1 1̄ 0 2)[1 1 2̄ 0]. (The MnSiγ (1 0 0 0) face corre-
sponds to the (1 0 0) face of the Mn subsystem.) The conduction type of
the MnSiγ thin film is p-type, which is confirmed by the fact that MnSiγ
thin films possess positive Seebeck coefficients. In order to realise an
NIR absorption solar cell based on HMSs, an n-type counterpart to the
p-type MnSiγ thin film is desired. Since (Mn0.7Fe0.3)Siγ bulk is known to

exhibit n-type conduction due to the increase in electron carriers by the
Fe substitution in some experimental studies [19–22], we fabricated an
(Mn0.7Fe0.3)Siγ thin film to act as the n-type counterpart. In addition,
the band gaps of the MnSiγ and (Mn0.7Fe0.3)Siγ thin films were eval-
uated.

2. Calculation and experimental methods

The electronic band structures of MnSiγ and (Mn0.7Fe0.3)Siγ were
calculated using the crystal structure models of Mn11Si19 and (Mn31/
44Fe13/44)11Si19 (i.e., (Mn∼0.70Fe∼0.30)11Si19) as shown in Fig. 1(a)
and (b), respectively. These models have an Si/Mn ratio (1. 7̇2̇) between
the γ values of MnSiγ (γ ∼ 1.7361(1) [8]) and Mn0.7Fe0.3Siγ (γ ∼
1.6814(3) [22]). The lattice parameters of Mn11Si19 were the same as
those used in a previous calculation (a=5.500 Å and c=44.881 Å
[9]). The lattice parameters of (Mn31/44Fe13/44)11Si19 were set at
a=5.451 Å and c=44.522 Å, because it has been reported that a 30%
Fe substitution in MnSiγ leads to a 0.9% and a 0.8% decrease in the a-
and c-axis lengths of the Mn subsystem, respectively [22]. The Mn/Fe
and Si atomic positions in Mn11Si19 and (Mn31/44Fe13/44)11Si19 were
identical with those reported in [5]. The band calculation was based on
the density functional theory with the Perdew-Burke-Ernzerh para-
meterised generalised-gradient-approximation using the WIEN2k code
[23]. The total number of k-points in the irreducible Brillouin zone was
ten for Mn11Si19 and eight for (Mn31/44Fe13/44)11Si19. The separation
energy between valence and core states was -7.0 Ry, and the cut-off
energy was 200 eV.
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Mn (purity: 3 N), Fe (purity: 3 N) and Si (purity: 4 N) powders were
weighed and mixed according to the nominal compositions of MnSi2
and Mn0.7Fe0.3Si2. For each system, the mixed powder was arc-melted
to prepare an ingot. The ingot was pulverised and then sintered by
spark plasma sintering at 1123 K for 3min under an applied pressure of
50MPa (SPS, 520S, Fuji Electric Industrial Co. Ltd.) to obtain MnSi2
and Mn0.7Fe0.3Si2 disc-shaped targets. The MnSi2 and Mn0.7Fe0.3Si2
targets were respectively irradiated by a pulsed laser with a wavelength
of 266 nm to grow MnSiγ and Mn0.7Fe0.3Siγ thin films on an R-sapphire
substrate. The substrate temperature was kept at 973 K during the
growth. The film thicknesses of MnSiγ and Mn0.7Fe0.3Siγ thin films were
98 nm and 87 nm, respectively. In order to characterise the crystal
structure of the thin films, X-ray diffraction (XRD) patterns were mea-
sured using a CuKα radiation source (D8 ADVANCE, BRUKER), and

Raman spectroscopy using a laser source with a wavelength of 532 nm
(NRS5100, JASCO) was performed. The band gap was investigated by
ultraviolet-visible-NIR (UV-Vis-NIR) spectroscopy (UV-3600,
Shimadzu). The XRD patterns, Raman spectra and UV-Vis-NIR spectra
were obtained at room temperature. The Seebeck coefficient was
evaluated by measuring an induced voltage in response to a tempera-
ture difference up to 0.5 K between the both ends of the film surface.

3. Results and discussion

Fig. 2 shows the electronic band structure along some high sym-
metry lines in the tetragonal Brillouin zone of (a) Mn11Si19 and (b)
(Mn31/44Fe13/44)11Si19, which are the model structures of MnSiγ and
(Mn0.7Fe0.3)Siγ, respectively. The Fermi level, EF, crossed some valence

Fig. 1. Crystal structure models used for the electronic band structure calculations: (a) Mn11Si19 and (b) (Mn31/44Fe13/44)11Si19.

K. Hayashi et al. Applied Surface Science 458 (2018) 700–704

701



Download	English	Version:

https://daneshyari.com/en/article/7832976

Download	Persian	Version:

https://daneshyari.com/article/7832976

Daneshyari.com

https://daneshyari.com/en/article/7832976
https://daneshyari.com/article/7832976
https://daneshyari.com/

