Accepted Manuscript

Full Length Article

Low Energy Ion Scattering (LEIS) of As-Formed and Chemically Modified Display Glass and peak-fitting of the Al/Si LEIS peak envelope

Cody V. Cushman, Philipp Brüner, Julia Zakel, Cameron Dahlquist, Brandon Sturgell, Thomas Grehl, Barry M. Lunt, Joy Banerjee, Nicholas J. Smith, Matthew R. Linford

PII: S0169-4332(18)31087-0

DOI: https://doi.org/10.1016/j.apsusc.2018.04.127

Reference: APSUSC 39126

To appear in: Applied Surface Science

Received Date: 8 March 2018 Revised Date: 5 April 2018 Accepted Date: 12 April 2018

Please cite this article as: C.V. Cushman, P. Brüner, J. Zakel, C. Dahlquist, B. Sturgell, T. Grehl, B.M. Lunt, J. Banerjee, N.J. Smith, M.R. Linford, Low Energy Ion Scattering (LEIS) of As-Formed and Chemically Modified Display Glass and peak-fitting of the Al/Si LEIS peak envelope, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.04.127

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Low Energy Ion Scattering (LEIS) of As-Formed and Chemically Modified Display Glass and peak-fitting of the Al/Si LEIS peak envelope

Cody V. Cushman, Philipp Brüner, Julia Zakel, Cameron Dahlquist, Brandon Sturgell, Thomas Grehl, Barry M. Lunt, Joy Banerjee, Nicholas J. Smith, Matthew R. Linford

Abstract

Flat panels displays (FPDs) are commonly manufactured on highly-engineered glass substrates known as display glasses. As FPD pixel sizes decrease and pixel densities increase, the surface composition and surface properties of these glasses have an increasingly important impact on device yield, influencing static electricity buildup and discharge, particulate adhesion, rate of contamination, and device lifetime. Here, we apply low energy ion scattering (LEIS) to the analysis of Eagle XG[®], a widely used display glass. Surfaces were treated with production-line relevant chemistries including acids, bases, etchants, industrial detergents, and plasmas. The resulting surfaces were compared to as-formed melt surfaces, fracture surfaces, and fibers formed from remelted Eagle XG[®]. LEIS revealed the elemental composition of the outermost atomic layer of these materials, detecting all major Eagle XG® constituents except boron. The surface composition of the glass differed as a function of forming process used to fabricate it as well as surface treatment. The surface concentration of aluminum on the as-formed melt surface differs significantly from the bulk composition. HCl treatment depleted the surface of all species except silica. HF treatment depleted modifier species from the glass surface to a lesser extent. An alkaline industrial detergent produced an increase in alumina relative to the as-formed glass surface. Treatment with an atmospheric-pressure plasma had no detectable impact on the elemental surface composition of the glass. Aluminum and silicon generally give overlapping signals in LEIS, and these signals could only be resolved here through a combination of optimized experimental conditions and data fitting. Various approaches to this data analysis were explored, including a guided least-squares approach herein referred to as informed sample model approach (ISMA), wherein the pure spectral components required for the fit were mathematically derived from the sample spectra. Most commercial display glasses contain both Al and Si, but there is little discussion of the deconvolution of these LEIS signals in the technical literature.

¹Brigham Young University, College of Physical and Mathematical Sciences, Department of Chemistry and Biochemistry. Provo, UT, 84602.

²IONTOF GmbH, Münster, Germany

³Brigham Young University, College of Engineering, Department of Information Technology. Provo, UT, 84602.

⁴Science and Technology Division, Corning Incorporated. Corning, NY

Download English Version:

https://daneshyari.com/en/article/7833057

Download Persian Version:

https://daneshyari.com/article/7833057

<u>Daneshyari.com</u>