Accepted Manuscript

Full Length Article

Highly selective PbS thin film based ammonia sensor for inert ambient: In-situ Hall and photoelectron studies

T.V. Beatriceveena, E. Prabhu, A. Sree Rama Murthy, V. Jayaraman, K.I. Gnanasekar

PII: S0169-4332(18)31712-4

DOI: https://doi.org/10.1016/j.apsusc.2018.06.145

Reference: APSUSC 39653

To appear in: Applied Surface Science

Received Date: 16 March 2018 Revised Date: 6 June 2018 Accepted Date: 16 June 2018

Please cite this article as: T.V. Beatriceveena, E. Prabhu, A. Sree Rama Murthy, V. Jayaraman, K.I. Gnanasekar, Highly selective PbS thin film based ammonia sensor for inert ambient: In-situ Hall and photoelectron studies, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.06.145

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highly selective PbS thin film based ammonia sensor for inert ambient: Insitu Hall and photoelectron studies

Beatriceveena. T. V^{a,b}, E. Prabhu^a, A. Sree Rama Murthy^a, V. Jayaraman^a,

K. I. Gnanasekar^{a,*}

^aMaterial Chemistry Division, Material Chemistry & Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102, India

^bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

Abstract:

Granular thin films of p-type semiconducting PbS (Cubic) with predominantly a-axis oriented grains having an average grain size of about 300 nm were deposited on polycrystalline alumina by pulsed laser deposition technique. Optical measurements show a band gap of 2.25 eV. The thin films were highly selective to ammonia at 473 K even in the presence of hydrogen and they operate in inert ambient with a typical response and recovery times of about 25 s and 120 s respectively. In-situ Hall measurements show an exponential decrease in hole carrier concentration with increasing NH₃ level. XPS analysis of Pb 4f and S 2p levels reveals that the valence state of Pb and Sulphur remain in +2 and -2 respectively after exposure to the reducing ammonia and the appearance of N 1s peak at 398.1 eV confirms dissociative chemisorption of ammonia on PbS surface.

Keywords: Pulsed laser deposition; Lead sulphide; Ammonia sensor; Hall studies.

1. Introduction:

During the past few decades, semiconductor oxide based sensors were developed for monitoring toxic and harmful gaseous species in the environment [1-4]. These sensors require oxygen for sensing and regeneration. The widely accepted mechanism of sensing proposed for semiconductor oxides (n-type) like SnO₂ [5, 6], In₂O₃ [7], ZnO [8] etc., involves the *Corresponding Author: E-mail address – igsk@igcar.gov.in; Tel.: +91 44 27480500, ext. 24073

Download English Version:

https://daneshyari.com/en/article/7833122

Download Persian Version:

https://daneshyari.com/article/7833122

<u>Daneshyari.com</u>