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a b s t r a c t

Simple beam theories may be applied to straight structures, while the behavior of curved structures
subjected to mechanical loadings is complex. In the present study, a displacement approach of Toroidal
Elasticity is chosen to analysis thick isotropic curved tubes under pure bending moments. The governing
equations are developed in a toroidal coordinate system. The method of successive approximation is
used to find the general solution. The accuracy of the presented method is subsequently verified by
comparing the results with finite element method (FEM) and stress-based Toroidal Elasticity (SBTE). The
results show good agreement. Also, high efficiency in terms of computational time is shown when the
presented method is used as compared with FEM (ANSYS). Finally, several numerical examples of stress
distributions in the thick isotropic curved tube subjected to pure bending are presented and discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Stress analysis of curved structures is often a complex task. In
addition, governing equations for curved structures are much more
complicated comparing with straight structures. Depending on the
geometric parameters, the flexibility of curved structures and
stresses can be much greater than those predicted by the beam
theory. Curved structures exhibit complex deformation fields given
their toroidal geometry and the multiplicity of configurations of
external loads. One type of these structures is curved tube. Curved
tubes are frequently used by the aerospace, offshore and infra-
structure industries. Prediction of the state of stress and strain in a
curved tube is of theoretical interest and practical importance.

Von Karman [1] found a theoretical explanation for the phenom-
enon of a curved tube having more flexibility in bending than a
straight one. The particular case of the Karman problem, the so-
called Brazier effect, which included the buckling analysis of straight
or curved pipes, was more complex [2]. Their works provided the
fundamentals for much of the subsequent tube analysis.

Ting [3,4] and Chen et al. [5] studied a cylindrical anisotropic
circular tube subjected to pressure, shear, torsion and extensive
loads for axisymmetric deformation of a homogeneous tube assum-
ing the stresses are just a function of radial distance. A theoretical
analysis for the prediction of the ultimate bending strength for
tubes subjected to bending was presented by Mamalis et al. [6].
Boyle [7] used nonlinear theory of shell to formulate the tube

bending problem. Reissner [8] represented the finite-bending
theory for curved tubes. Axelrad and Emmerling [9] studied the
flexure of cylinders and slightly curved pressurized tubes. They
used the Flexible-Shell-Theory to determine the large pre-critical
deformation. Emmerling [10] determined the nonlinear deforma-
tion of elastic curved tubes subjected to bending loads. He, also,
studied the pre-critical deformation of the tubes on the basis of the
semi-membrane theory. Bushnell [11] studied types of instability,
and classical buckling problems involving the axially compressed
cylindrical shell and the externally pressurized spherical shell.

The developing theory of Toroidal Elasticity (TE) was employed
to determine the stress and displacement fields in toroidal rings,
elbows and vessels which are utilized in chemical, nuclear and
power supply plant. Gohner [12] apparently was the first to
investigate the technical problem of a curved solid circular ring
sector subjected to pure twist and bending moments. The problem
of helical springs subjected to tension and torsion loading was
observed by Ancker and Goodier [13] through the thin-slice
method. They assumed that the springs had the same cross section
and same resultant force and moments on each cross section.
Kornecki [14] and McGill [15] developed the theory of Toroidal
Elasticity by extending Gohner's work. Kornecki [14] employed the
method of successive approximation to solve the governing equa-
tions. The finite difference method was used by McGill [15]. A major
contribution to the theory of Toroidal Elasticity was done by Lang
[16]. He summarized prior research works [16,17] and developed
the theory of Toroidal Elasticity in the non-classical Toroidal
coordinate system. In Lang's works, the stress approach method
was utilized, thus, he did not find deformation fields directly. The
works of Lang had been advanced by Redekop [18,19]. He used the
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displacement components as the basic variables and developed the
governing Navier equations in this coordinate system. Eric [20]
investigated the linear problem of pure bending of thin walled
curved tubes. The solution of a circular cylindrical shell under a
uniformly pressure was employed as the first approximation to the
solution of this problem. Bushnell [21] analyzed an initially uni-
formly curved tube. The pipe was treated as part of a toroidal shell.
Recently, a hybrid formulation solution was used to obtain the
stress intensity factor to double-curvature pipe close to the crack
area [22]. A formulation dealing with finite shell elements was
presented to solve the problem of stress analysis of curved pipes
subjected to in-plane bending forces [23]. Kolesnikov [24] consid-
ered a short sector of torus as a curved tube and analyzed
the large pure bending deformations of the tube. The solution
was based on finite curved elements. Finally, Levyakov [25] studied
nonlinear equations of in-plane bending of curved tubes based on
Reissner's formulation in terms of two unknown functions and
parameters. To solve the equations, a numerical method based on
the finite-difference approximations and Newton–Raphson itera-
tion technique was developed. The buckling phenomenon for a
straight pipe under a pure bending moment was studied by non-
linear FEA [26].

Although finite element methods can be used for analyzing
curved structures, it is necessary to do the meshing for each structure
every time some dimensions are changed. Therefore, it is desired to
have an analytical method where the input to obtain the solution is
simple; i.e. one only needs to enter in the actual dimensions without
the meshing work. The present study deals with studying analytically
the stresses within isotropic curved tubes under pure bending. The
displacement-based Toroidal Elasticity (DBTE) which includes the full
three-dimensional constitutive relations, is employed. The compar-
ison is done between results obtained from introduced analytical
method with SBTE and FEM (ANSYS). Good agreement is obtained.
Finally, the stress distributions in tube cross sections are studied
through a number of examples. In addition, effects of a geometric
parameter on stress distributions are analyzed.

2. Displacement based toroidal elasticity (governing equations)

The non-classical toroidal coordinate system is shown in Fig. 1. The
isotropic curved tube has a bend radius R, and an annular cross section
bounded by radii a and b (see Fig. 1). A general point P in a constant
thickness curved tube can be represented easily by the non-classical
Toroidal coordinate system r, φ, and θ where r and φ are polar
coordinates in the plane of the tube cross section and θ defines the

position of the tube cross section. ς¼r/c is a non-dimensional radial
coordinate in the toroidal coordinate, and c is a reference length to be
specified later. For convenience, non-dimensional displacements u, v, and
w are defined as:

u¼ uς
c
; v¼ uϕ

c
; w¼ uθ

c
ð1Þ

Non-dimensional stress components are defined as [18,19]:
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The non-dimensional stress components may be expressed in terms of
the three non-dimensional displacement components as:
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ϑ¼ψþ c
ρχ

ψ ¼ ∂u
∂ς

þu
ς
þ1
ς
∂v
∂ϕ

χ ¼ u cos ϕ�v sin ϕþ∂w
∂θ

ð4Þ

Nomenclature

a, b inside and outside cross-sectional radius of the
curved tube

c reference length
an, bn, cn, dn, en, fn constants of the nth order complementary

solution
Ani, Bni, Cni constants of the nth order particular solution
E Young's modulus
G shear modulus
M0 bending moment
R mean radius of isotropic curved tube
uς, uϕ, uθdisplacement components in toroidal coordinate
u, v, w non-dimensional displacement components
uk, vk, wk the kth order non-dimensional displacement

components

U, V, W the first part of Navier function
U, V, W the second part of Navier function
Û, V̂ , Ŵ the third part of Navier function
Uk, Vk, Wk the first part of Navier function of the kth order
Uk, Vk, Wk the second part of Navier function of the kth order
Ûk, V̂k, Ŵk the third part of Navier function of the kth order
ε b/R
ν Poisson ratio
ς, ϕ, θ toroidal coordinates
τςς ; τϕϕ; τθθ non-dimensional normal stress components
τςϕ; τϕθ ; τςθ non-dimensional shear stress components
τςςk; τϕϕk; τθθk the kth order non-dimensional normal stress

components
τςϕk; τϕθk; τςθk the kth order non-dimensional shear stress

components

Fig. 1. Geometry and coordinate system of the curved tube.
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