Accepted Manuscript

Full Length Article

Superior Sensing Affinities of Acetone Towards Vacancy Induced and Metallized ZnO Monolayers

T. Hussain, H. Vovusha, R. Umer, R. Ahuja

PII: S0169-4332(18)31722-7

DOI: https://doi.org/10.1016/j.apsusc.2018.06.155

Reference: APSUSC 39663

To appear in: Applied Surface Science

Received Date: 9 April 2018 Revised Date: 15 May 2018 Accepted Date: 18 June 2018

Please cite this article as: T. Hussain, H. Vovusha, R. Umer, R. Ahuja, Superior Sensing Affinities of Acetone Towards Vacancy Induced and Metallized ZnO Monolayers, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.06.155

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Superior Sensing Affinities of Acetone Towards Vacancy Induced and Metallized ZnO Monolayers

T. Hussain*, 1, 2 H. Vovusha^{3, 5}, R. Umer⁴ R. Ahuja 5, 6

¹Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia

²School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia

³King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia

⁴Centre for Future Materials, University of Southern Queensland, Toowoomba, QLD, 4350, Australia

⁵ Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, 75120 Uppsala, Sweden

⁶Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH) S-100 44 Stockholm, Sweden

t.hussain@uq.edu.au

Abstract:

The sensing propensities of acetone molecule towards zinc oxide monolayers (ZnO-ML) have been studied by means of density functional theory (DFT) calculations. Our van der Waals induced first principles calculations revealed that pristine ZnO-ML barely binds acetone, which limits its application as acetone sensing materials. However the formation of vacancies and foreign element doping improves acetone binding drastically. Among several defects, divacancy, and metal doping Li, Sc and Ti functionalization on ZnO-ML has been found the most promising ones. Presence of dangling electrons and partial positive charges in case of vacancy-induced and metallized ZnO-ML respectively, is believed to enhance the binding of acetone on the monolayers. The acetone-ZnO binding behavior has been further explained through studying the electronic properties by density of states and charge transfer mechanism

Download English Version:

https://daneshyari.com/en/article/7833209

Download Persian Version:

https://daneshyari.com/article/7833209

<u>Daneshyari.com</u>