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Elastic wave propagation through diffraction gratings is studied numerically in the plane strain setting.
The interaction of the waves with periodically ordered elastic inclusions leads to a self-imaging Talbot
effect for the wavelength equal or close to the grating size. The energy localization is observed at the
vicinity of inclusions in the case of elastic gratings. Such a localization is absent in the case of rigid
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1. Introduction

Wave motion in solids is an extremely important physical
phenomenon due to wide range of applications. The propagation
of mechanical waves can be controlled via scattering induced by a
material's structure. Given the high frequencies and high values of
excitations used in contemporary technology, the material proper-
ties must be very clearly determined up to smaller scales and an
internal structure of materials. The need to tailor materials able to
meet various conditions is obvious. That is why during the last two
decades, the attention to man-made metamaterials has been
tremendously increased [41,20,27,44|. This is understandable
because metamaterials are characterized by their properties
beyond those of conventional engineering materials and therefore
their practical applications display new qualities for technology.
The reader is referred to more detailed overviews on this topic
[34,35,25].

It is not surprising that the wave propagation in metamaterials
cannot rely on classical continuum mechanics based on the
homogeneity of materials. Indeed, the wave propagation in solids
with inhomogeneities (inclusions) or microstructured solids at
various scales has also been studied intensively based on various
assumptions about the internal structure of the material [30,12,15]
and various mathematical models were derived (see e.g. Engel-
brecht and Berezovski [14]). From the physical viewpoint, the most
important feature of waves in microstructured materials is the
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interaction of waves with inhomogeneities which is the source of
wave dispersion, diffraction and interference. However, as in
optics, one of the basic problems to be solved is the diffraction
of waves on inhomogeneities. In light and atom optics, the
diffraction of waves is a well-known and well-studied phenom-
enon, both for near-field (Fresnel diffraction) and far-field (Fraun-
hofer diffraction) zones. In solid mechanics the interest to the
diffraction started due to the practical importance of the dynamic
stress concentration on obstacles [31] and nondestructive testing
[22]. The earlier theoretical studies related to the elastic wave
diffraction on inclusions were shadowed by analytical difficulties
[19,1]. It is remarkable, however, that the elastic counterpart of the
well-known Talbot effect in optics [39] is not so largely studied.
Discovered by Henry Fox Talbot in 1836, the phenomenon involves
the diffraction of a plane wave through a grating. As a result of
such a process, a regular diffraction structure, called the Talbot
carpet, appears which reproduces the structure of the grating at
multiples of a certain distance. This distance is now called the
Talbot length. Lord Rayleigh [36] proved that the appearance of the
Talbot structure was a consequence of the Fresnel diffraction. He
also determined the Talbot length zr =2a?/4, where a is the
period of the grating and A is the wavelength of the incident
periodic wave.

The interest to the Talbot effect, i.e. to the diffraction through a
grating is recently increased due to novel possible applications of the
physical phenomena related to the diffraction: for example, atom
lithography [27], quantum and optical carpets [11], electron spin
effect [40], effects of metallic gratings [38], phononic crystals [24,17],
behavior of metamaterials [43], etc. Clearly the Talbot effect in solids
needs more detailed analysis because this is a basic case of the
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diffraction phenomenon. The demonstration of the elastic Talbot
effect [10] was performed in full analogy with optical case [26], i.e.,
under the Kirchhoff assumption that distances from the aperture are
larger than wavelengths and the grating is rigid. However, it is
practically impossible to implement a perfectly rigid grating into an
elastic material. It is worth, therefore, to investigate wave patterns
appearing in a more suitable elastic grating case. It is clear that
following the theory of elasticity both the longitudinal and trans-
verse waves must be taken into account in the diffraction pattern.

In spite of the linearity of governing equations of classical
elasticity, it was possible to construct solutions to diffraction
problems only for rather simple problems like, for example, the
diffraction from a single rigid barrier in an elastic medium by
using the Wiener-Hopf method [19], the interaction of an impact
wave with a rigid circular disc [23] and the interaction of an
impact wave with a rigid plane inclusion [33].

The situation is changed with the growth of computational power
and the progress in numerical techniques. The development of finite
difference [3], finite element [21], and finite volume [28] algorithms
for wave propagation in solids resulted in the numerous applications
to nondestructive testing [42,18,2]. An example of an effective
numerical analysis is a study of the guided waves at a periodic array
of coplanar slits using Bloch harmonics [17]. Design of new materials
like phononic crystals [34] demands even more accurate prediction of
the wave propagation in structured solids.

The advantage of numerical simulation is its generality, capable
of predicting accurate wave fields for any composite with arbi-
trarily distributed scatterers. In the case of elastic wave propaga-
tion, the wave field can be simulated accurately by solving the
elastodynamic equations for the matrix and the scatterers respec-
tively. In what follows we present the results of numerical
simulations of elastic wave propagation for simple geometry of
substructure with different material properties. We limit ourselves
by the plane strain case since it is sufficient to demonstrate basic
effects. We do not apply any kind of homogenization; all compu-
tations are performed directly for given materials.

In Section 2 the numerical procedure is described briefly. The
reference wave pattern due to the rigid grating is reviewed in
Section 3. Section 4 is devoted to the results of numerical
simulations of wave patterns due to the elastic grating. Transmit-
tance and the influence of wavelength are analyzed in Sections
5 and 6, respectively. An unexpected result for the energy
localization is reported in Section 7. Finally, in Section 8, conclu-
sions are given stressing the emergence of wave patterns and the
localization of energy. The governing equations and its dimension-
less form are presented in Appendix A. The important problem of
boundary conditions is explained in Appendix B.

2. Numerical procedure

The governing system of equations (see Appendix A) is solved
numerically by means of the conservative finite-volume wave-
propagation algorithm, which was proposed by LeVeque [28,29]
and modified for the application to front propagation by Bere-
zovski et al. [6], Berezovski and Maugin [8,9]. The algorithm was
successfully applied for the wave propagation simulation in
inhomogeneous solids [7].

The modification of the wave-propagation algorithm [9] is
based on the non-equilibrium jump relations at the boundaries
between computational cells. The main idea in the construction of
the numerical algorithm is the consideration of every computa-
tional cell as a thermodynamic system [32]. Since we cannot
expect that this thermodynamic system is in equilibrium, its local
equilibrium state is described by averaged values of field quan-
tities. The use of cell averages is a standard procedure in the finite-

volume methods. What is non-standard that is the introduction
into consideration so-called “excess quantities” in the spirit of the
thermodynamics of discrete systems [32].

Excess quantities represent the difference between values of
true and averaged quantities [7]:

vi=V;+Vi, Cij =6U+ZU (1)

Here v; are components of the velocity vector, ¢;; are components
of the stress tensor, overbars denote averaged quantities, and
capital letters correspond to excess quantities.

Though excess quantities are determined formally everywhere
inside computational cells, we need to know only their values at
the boundaries of the cells, where they play the role of numerical
fluxes that describe the interactions between neighboring cells [5].
These excess quantities are calculated by means of jump relations
at the boundaries between cells [7]. It should be emphasized that
jump relations used here provide the continuity of unknown fields
at the boundaries between computational cells. The advantage of
the algorithm is that every discontinuity in parameters is taken
into account by the exact solution of the Riemann problem at each
interface between discrete elements. The reflection and transmis-
sion of waves at each interface are handled automatically for any
inhomogeneous media. The applied algorithm is conservative,
stable up to the Courant number equal to 1, high-order accurate,
and thermodynamically consistent [7,8].

3. Wave pattern due to rigid grating

As it was shown recently [10], the well-known Talbot effect in
optics can be observed also in the case of elastic waves. The
corresponding simulations, however, were performed for the case
of perfectly rigid gratings. Here we demonstrate first a case where
the size of rigid inclusions is equal to each other and to the
distance between them. This scenario allows us to consider the
problem independently from the length scales (see Appendix A).
The geometry of the problem is shown in Fig. 1a. The grating is
placed at 100 space steps from the left boundary.

The monochromatic plane wave is excited at the left boundary of
the computational domain. The wavelength of the incident wave is
equal to the size of the grating (20 space steps in the discretized
computational domain). Boundary conditions at lateral boundaries
are periodic (like Eqgs. (47)-(48)). At the right boundary, the non-
reflective boundary conditions (like Eqs. (45)-(46)) are applied. Note
that in order to model rigid inclusions, all velocities and stresses are
prescribed to be zero inside the inclusions. Additionally, boundary
conditions for fixed boundary (similar to Eq. (B.4)) are prescribed at
each side of the inclusion. Calculations performed up to 1400 time
steps to avoid the influence of any reflection from the left boundary
which is placed virtually at 500 space steps upstream the grating. It
must be stressed that in this 2D elastic case both longitudinal and
transverse wave exist.

The contour plots for the normal stress field along the long-
itudinal axis are shown in Fig. 1. The self-imaging Talbot carpet in the
case of rigid grating is clearly seen in the contour plot (Fig. 1b). The
emergent pattern is similar to this presented in [10]. The calculated
pattern corresponds to the stress distribution at 1400 time steps. This
case of rigid inclusions serves as the reference example for the
comparison with the gratings composed by elastic scatterers.

4. Wave patterns due to elastic grating
The perfectly rigid grating is an idealization suited well for optics

but hardly realized in solids. That is why we consider a more practical
case with an elastic grating within an elastic matrix. To extend the
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