

Contents lists available at ScienceDirect

### Applied Surface Science



journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

# Mitigation of low methane content landfill gas through visible-near-infrared photocatalysis over $Y_2O_3$ :Er<sup>3+</sup>/Graphene/TiO<sub>2</sub>



Xinmei Tian<sup>a</sup>, Siyuan Huang<sup>a</sup>, Luochun Wang<sup>a,\*</sup>, Lin Li<sup>a</sup>, Ziyang Lou<sup>b,\*</sup>, Shouqiang Huang<sup>b</sup>, Zhen Zhou<sup>a</sup>

<sup>a</sup> College of Environmental and Chemistry Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, PR China
<sup>b</sup> School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China

#### ARTICLE INFO

Keywords: Low CH<sub>4</sub> content landfill gas Mitigation process Photocatalyst Upconversion Graphene Photodegradation mechanism of CH<sub>4</sub>

#### ABSTRACT

Untreated low methane (CH<sub>4</sub>) content (less than 10%) landfill gas within the post-methanogenic stage is currently vented into the atmosphere, constituting an important source of anthropogenic greenhouse gas (GHG). Development of a proper mitigation process for low CH<sub>4</sub> gas is therefore necessary for landfills. In this study a special photocatalyst,  $Y_2O_3$ :Er<sup>3+</sup>-TiO<sub>2</sub>-0.05% graphene (GR), was synthesized by sol-gel method and then characterized; it showed a good response to visible-near-infrared (Vis–NIR) sunlight. The corresponding absorption edge was 354 nm, and upconversion fluorescence peaks of ultraviolet (364 nm) and violet (408 nm) emissions were acquired under 980 nm excitation.  $Y_2O_3$ :Er<sup>3+</sup>-TiO<sub>2</sub>-GR was developed and tested for removal of low CH<sub>4</sub> landfill gas under Vis–NIR light irradiation, and a maximum photodegradation rate of 45.1% for CH<sub>4</sub> was obtained using the photocatalyst  $Y_2O_3$ :Er<sup>3+</sup>-TiO<sub>2</sub>-0.05% GR with a light intensity of 2050 mW m<sup>-2</sup>. The corresponding CH<sub>4</sub> content decreased from 10% to 5.5%, mitigating almost half of GHG during the post-methanogenic stage. The intermediate products of CH<sub>4</sub> degradation were CO, 'OH, O<sup>-</sup>, CO<sub>2</sub> and H<sub>2</sub>O traced by *in-situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). This research proposes a new approach for reducing the GHG effect of low CH<sub>4</sub> content landfill gas.

#### 1. Introduction

CH<sub>4</sub> derived from landfills is an important source of greenhouse gas (GHG) emissions, totalling approximately 11–13% of anthropogenic CH<sub>4</sub> emissions [1,2]. CH<sub>4</sub> in landfill gas varies with extended disposal time, and no more than 50% of the total CH<sub>4</sub> in landfill gas can be collected in the methanogenic stage due to landfill gas fugitive and low value landfill gas [3]. Landfill gas with high content CH<sub>4</sub> is relatively straightforward to burn and is often used to generate electricity in modern landfill sites. It is difficult to directly burn landfill gas with a low CH<sub>4</sub> content, such as gas with less than 20% for example [4]. In addition, exploitation of low CH<sub>4</sub> landfill gas as a fuel, such as that typically existing in a landfill at the post-methanogenic stage or in small-scale landfills, is not viable owing to its lower heating value and higher investment requirement.

Landfill sites with a large surface area receive a high exposure to sunlight; therefore, the application of a photocatalyst within the  $CH_4$  conversion process might offer a promising and viable solution. Traditional photocatalytic degradation technology relies on ultraviolet (UV) light, meaning that over 95% of available solar energy cannot be

used in this process. The construction of highly efficient visible-nearinfrared (Vis-NIR) light responsive photocatalysts is essential for effective photocatalysis. The incorporation of a metal atom [5–8], graphene (GR) [9], and upconversion (UC) material [10,11] in a traditional photocatalyst can contribute to viable utilization of solar energy. NIR accounts for a large fraction within sunlight [12–15], and rareearth elements can transform low-energy photons to high-energy photons, thereby converting NIR sunlight into visible and UV light [16,17]. A photocatalyst doped with rare-earth elements can improve the utilization efficiency of sunlight. Rare-earth ions doped into semiconductors can acquire electrons to form two valence electrons, such as  $Er^{2+}$ , which can promote the separation of photoelectrons from holes [12]. GR may act as an electron bridge to promote the transfer of electrons between TiO<sub>2</sub> particles, which retards recombination and prolongs the carrier lifetime [18].

Some studies have shown the degradation potential of  $CH_4$  under UV irradiation. For example, Villa et al. [19,20] reported the conversion of  $CH_4$  to methanol in an aqueous solution under UV–visible light irradiation with WO<sub>3</sub>, while László et al. [21] investigated the photocatalytic conversion of  $CO_2$  and Ar under UV light over Au- and Rh-

\* Corresponding authors. E-mail addresses: wangluochun@shiep.edu.cn (L. Wang), louworld12@sjtu.edu.cn (Z. Lou).

https://doi.org/10.1016/j.apsusc.2018.06.138

Received 4 January 2018; Received in revised form 24 May 2018; Accepted 15 June 2018 Available online 21 June 2018

0169-4332/ ${\ensuremath{\mathbb C}}$  2018 Elsevier B.V. All rights reserved.

doped titanate nanotubes. Most of the studies were based on the reaction of high concentration  $CH_4$  (20–100%) in aqueous solution under the protection of inert gas using UV light.

In this study photocatalysis was introduced into a landfill to reduce the CH<sub>4</sub> within low CH<sub>4</sub> content landfill gas. Special photocatalysts of TiO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub>:Er<sup>3+</sup>-TiO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub>:Er<sup>3+</sup>-TiO<sub>2</sub>-GR were prepared by the sol-gel method. Conventional analytical techniques could not be used as the concentration of intermediate products were low; therefore, *in-situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to detect the change of functional groups on Y<sub>2</sub>O<sub>3</sub>:Er<sup>3+</sup>-TiO<sub>2</sub>-0.05% GR surface, and then to deduce the CH<sub>4</sub> degradation intermediate products. The photocatalytic degradation and mechanism of low CH<sub>4</sub> content (10%) landfill gas under Vis-NIR illumination by catalysis were systematically investigated, with the main objective of reducing the contribution of low CH<sub>4</sub> landfill gas on GHG emissions. The removal of CH<sub>4</sub> through the photocatalytic process within low CH<sub>4</sub> content landfill gas offers a promising solution for the GHG mitigation in landfills.

#### 2. Methods

#### 2.1. The synthesis of photocatalysts

The composite catalysts  $Y_2O_3:Er^{3+}$ -TiO<sub>2</sub>-GR were synthesized by a sol-gel method (Fig. 1). To enhance UC contribution to photocatalytic activity, Y was chosen as a sensitizer to transfer its energy to Er; this approach of dual ion UC may increase optical absorption in the NIR. For a more detailed description of the synthesis of  $Y_2O_3:Er_2O_3$  (Fig. S1),  $Y_2O_3:Er^{3+}$ -TiO<sub>2</sub> (Fig. S2) and graphene oxide (GO) see Experimental methods in Supporting Information.

#### 2.2. Photocatalytic degradation and degradation mechanism of CH<sub>4</sub>

The photocatalytic degradation of CH<sub>4</sub> was conducted in a photocatalytic reaction system (Fig. S3 is a diagramatic representation of a photocatalytic reactor). The system was equipped with a photocatalytic reactor and a Vis-NIR light generator, including an SXE-300BF xenon lamp fitted with a UV filter ( $\lambda > 400$  nm). The distance between the quartz reactor and xenon lamp was 4 cm. The titanium mesh loaded with 1 g catalyst was placed in the center of the reactor. Before illumination, the mixed gas was transported into the reactor, following which it was placed in the dark for 1 h to achieve an adsorption/ desorption equilibrium between catalysts and the mixture gas. The mixed gas comprised  $CH_4$  and  $CO_2$  at a volume ratio of 1:9. The photodegradation experiments were conducted under Vis-NIR light irradiation with a humidity of 23–26% and a temperature of 23–30 °C. At periodic intervals, 1 mL of the mixed gas was extracted from the reactor and analyzed by gas chromatography (GC7900, Shanghai Tian Mei Scientific Instrument Co., Ltd.). Functional groups of intermediate products were tested with an *in-situ* DRIFTS gas analyzer (Thermo Nicolet 8700) equipped with a homemade quartz *in-situ* reactor. The scanning range of the *in-situ* infrared spectrometer was 400–4000 cm<sup>-1</sup> and the process ran for 180 min.

#### 2.3. Characterizations

The X-ray diffraction (XRD) patterns of the samples were measured using an automated Bruker D8 Advance X-ray Polycrystaline Diffractometer. Morphological observations were achieved by use of a JSM-7800Ffield emission scanning electron microscope (FESEM), a JEM-2100F transmission electron microscope (TEM), and Agilent-5500 atomic force microscopy (AFM). The energy-dispersive spectrometry (EDS) analysis of the samples was performed with a JSM-7800F FESEM. The absorption bands of the catalysts were determined with UV–Vis diffuse reflectance spectroscopy (DRS) and the diagonal of formula Eg =  $(\alpha h v)^{1/2}$  was used to calculate the band gap (Eg). UC fluorescence spectra were measured with a Hitachi F-7000 fluorescence spectro-photometer equipped with a 980 nm semiconductor solid laser with tunable power.

#### 3. Results and discussion

#### 3.1. Properties of the photocatalysts

#### 3.1.1. XRD and morphology analyses

The XRD patterns (Fig. 2a) indicated that all samples contained the anatase TiO<sub>2</sub> phase. The major diffraction peaks were located at 25°, 37°, 48°, and 63°, which match very well with the (101), (104), (200), and (204) planes of anatase TiO<sub>2</sub> (JCPDS card no. 84-1285), respectively. The XRD results indicated the absence of any other phases of TiO<sub>2</sub> and showed that the main diffraction peaks of the  $Y_2O_3$ :Er<sup>3+</sup>-TiO<sub>2</sub>-0.05% GR composites were similar to those of pure  $Y_2O_3$ :Er<sup>3+</sup>-TiO<sub>2</sub> particles (JCPDS card no. 84-1285). The incorporation of Er and Y did not alter the crystalline phase, despite their ionic radii being larger



Fig. 1. Synthesis process of Y<sub>2</sub>O<sub>3</sub>:Er<sup>3+</sup>-TiO<sub>2</sub>-GR.

Download English Version:

## https://daneshyari.com/en/article/7833255

Download Persian Version:

https://daneshyari.com/article/7833255

Daneshyari.com