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a b s t r a c t

The viscoplastic hyperbolic sine form which describes the inelastic strain rate is combined with the
Ohno-Wang kinematic hardening rule. Experiments under monotonic tensile loads at different strain
rates as well as under cyclic loadings are used to obtain all model parameters with the trial and error
method. The effects of strain jumps of the stress, the saturated visco-plasticity behavior under cyclic
loadings and the stress relaxation for several metallic materials are simulated. The usage of the
exponential form instead of the hyperbolic sine form for the inelastic strain rate is discussed finally.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays many engineering components, which usually exhi-
bit relaxation or creep behavior that can be regarded as rate-
depended and eventually leads to ductile fracture, work at high
temperature [1]. The demands for the safety design as well as the
life prediction of the components are ever increasing. The impor-
tance for the construction on an appropriate constitutive model,
which can accurately simulate the stress and strain of the
materials that are made into engineering parts in such as nuclear
plants, power generation industries, steam turbine and aerospace,
is of particular significance. The rate dependent phenomenon is
always correlated to the visco-plasticity of the material.

There have been many researches on the viscoplasticity model
[2–8]. For Bodner's theory [2], a “directional hardening” was used,
and the viscosity function combined a power and an exponential
function. In the model proposed by Chaboche [3–5], several back
stress terms were superposed to stand for the kinematic hard-
ening, and the exponential form for the plastic strain rate was
chosen. In the model introduced by Miller [6], there was only one
back stress for kinematic hardening and a drag stress for isotropic
hardening. In the Robinson model [7], only one term for the back
stress was used to depict the static recovery terms, the drag stress
was conducted to illustrate the isotropic hardening, the yield
stress was used for the inelasticity behavior and the power
function was employed for the viscoplastic flow description. The

Krempl's VBO (viscoplasticity based on overstress) theory [8] that
based on the overstress concept, formulated the back stress
evolution with total strain rate instead of the viscoplastic strain
rate. Since 1990s, ratcheting behavior has been extensively inves-
tigated by unified model, the total back stress was decomposed
into several parts, the evolution of each part for the back stress
was described by the Ohno-Wang model [9–12], and the plastic
strain rate was always in the exponential form [13–16].

However, due to the complexity, ambiguity, and high cost, the
unified model parameter determination is still a challenge for
engineers, especially for the parameters of the viscoplasticity part.
For Chaboche unified model, how to determine all the parameters,
including kinematic part, visco-part, and isotropic part with strain
memory, were discussed in detail in the literature [17]. Addition-
ally, Tong et al. [18] optimized the visco-plastic parameters based
on the initial values for the unified model. The parameters for the
kinematic parts in the rate-independent model have been put
forward by Jiang [19,20]. The method on how to determine the
other parameters for the viscous part and the isotropic part can be
found in references [13,21]. In the literatures, the visco-part
parameters were obtained by the least square method and the
transcendental equation solution, and parameters for the isotropic
part were determined by the curve fitting for the maximum stress
per cycle versus the accumulated plastic strain [21].

Little attention has been devoted to the viscous part which is
usually used to describe the time or rate dependent behaviors in
materials [22]. In this study, the hyperbolic sine function is
adopted to depict the inelastic strain rate. It was reported that
the hyperbolic sine form had been adopted in some literatures
[6,10,23]. However, how to determine the related parameters for
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the form was not illustrated in detail. Additionally, the creep
experiments which are required for the parameter determinations,
are expensive and time-consuming. We approached a method to
identify the rate-dependent parameters as well as the kinematic
parameters from the stress–strain curve under the different strain/
stress rates. Also the parameters for the isotropic hardening law
were obtained from the cyclic experiment under the strain-
controlled load. Finally, combined the hyperbolic sine function
and the Ohno-Wang II model, we simulate the stress jumps for
different strain rates, the cyclic visco-plasticity behaviors, and the
stress relaxation for nickel-based alloy. The advantages for the
hyperbolic sine function are discussed in the last section.

2. Viscoplasticity model

In the viscoplastic model, the total strain can be divided into
two parts: the elastic strain εeij and the inelastic strain εpij that also
can be regarded as the plastic strain.

εij ¼ εeijþεpij ð1Þ

εeij ¼D�1
ijkl σkl ð2Þ

Dijkl is the fourth-order tensor of the Hook elasticity, σkl is the
total stress tensor.

The hyperbolic sine function is chosen to describe the rate-
dependent inelastic part,

_εpij ¼ A sinh
Fy
D

� �� �B Sij�αij

‖Sij�αij‖
ð3Þ

where A, B, and D are the parameters that are determined in the
following section. Sij and αij are the partial stress tensor and the
back stress tensor, respectively. Fy is the yield function that be
expressed as following,

Fy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5ðSij�αijÞðSij�αijÞ

q
�k�R ð4Þ

where k is the initial yield stress, R is the isotropic hardening stress
which is used to describe the expansion or contraction of the
hysteresis loop without consideration of the strain memory under
the cyclic loading [18]. The evolution for the the isotropic hard-
ening stress is,

dR¼ bðQ�RÞdp ð5Þ
where b, Q are the isotropic hardening parameters. Q is the asymptotic
value of the drag stress R that reaches the saturation, b represents the
speed towards the saturation. dp is the increment of the equivalent

plastic strain that can be illustrated by dp¼ ð2=3Þdεpij : dε
p
ij

� �1=2
. It is

assumed that the initiation value for the isotropic internal variable R
is zero.

The back stress αijthat represents the kinematic hardening and
indicates the Bauschinger effect due to plastic flow under cyclic
loading, can be divided into several parts, and each part follows
the Ohno-Wang II model [9,10,12]:

_αðkÞ
ij ¼ ξðkÞ

2
3
rðkÞ _εpij�

αðkÞ

rðkÞ

� �mðkÞ

_εpij : K
ðkÞ
ij

D E
αðkÞ
ij

2
4

3
5 ð6Þ

where αðkÞ
ij is the kth part of the back stress, and αðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:5ðαðkÞ
ij : αðkÞ

ij Þ
q

is the equivalent back stress. Kk
ij ¼ αðkÞ

ij =αðkÞdenotes

the normal direction for the kth part of back stress componentαðkÞ
ij .

The parameters ξðkÞij , mðkÞandrðkÞij will be determined in the next

sections. 〈 〉is the Macauley bracket and satisfies xh i ¼ xþ xj jð Þ=2.

3. Determination of the parameters

The data from uniaxial experiments in literatures is conducted to
determine all the parameters except the isotropic part's in the
viscoplastic model that is proposed in the previous section. It is
noticed that all the tensors, such as stress σij, back stress αij, total
strain εij, and plastic strain εpij, can be simplified as scalars under the

uniaxial load.
The first step is to determine the parameters correlated to the rate-

dependent inelastic part, i.e. the parameters A, B, and D in Eq. (3).
Under the uniaxial tensile load, for a stress value large enough and
more than the yield stress, it is found that the total stress σ can be
divided into three parts: rate-dependent or viscous-stress σv, the
kinematic part or back stress α, and the isotropic part kand R [18]:

σ ¼ αþRþðkþσvÞ for tensile load ð7Þ
In the monotonic tensile experiments with different strain

rates, at the same level of strain, the viscous-stress can be
considered as the difference of the uniaxial stress at different
strain rate. The reason is that the influence of the isotropic part R is
negligible, and the back stress α can be considered to be the
saturated value as the strain is large enough.

The experiments for the material of Ta-25W [24] under
different strain rates of10�5=s, 10�4=s, 10�3=s, and 10�2=s are
selected to illustrate how to determine the parameters correlated
to the viscous part (Fig. 1). In the figure the results from simula-
tions for the different strain rates are also plotted. As for the large
strain, such as more than 15%in Fig. 1, the back stress can be
regarded as saturated, and there's no distinction between the
isotropic parts k and R for any different strain rate. From Eq. (7),

Nomenclature

A;B;D visco-part parameters
b;Q isotropic hardening parameters
Dijkl fourth order tensor for Hook elasticity
dp increment of the equivalent plastic strain
Fy yield function
Kk
ij normal direction for the kth part of back stress

k yield stress
R isotropic hardening stress
Sij partial stress tensor

αij total back stress
αðkÞ
ij the kth part of back stress

αðkÞ equivalent back stress
_ε strain rate for tensile loading
εij total strain tensor
εeij,ε

p
ij elastic and plastic strain tensor

_εpij plastic strain rate
σkl stress tensor
σv visco-stress
ξðkÞij ;m

ðkÞ; rðkÞij kinematic part parameters
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