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a b s t r a c t

This paper deals with the statics and stability of a nonprismatic beam described according to
Timoshenko theory, with various geometric nonlinearity models taken into account. The investigated
models differed in the complexity of the nonlinear part of the strain tensor. In the simplest model only
one nonlinear deformation component, i.e. W 0� �2

=2, was taken into account. Most of the works on
geometrically nonlinear beam models, known to the present authors, analyze the simplest model. As
demonstrated here this model yields correct results only in for beams with nonslidable supports. An
analysis of slidable systems carried out in this paper indicates big differences between the solutions
obtained using the different nonlinearity models and shows that in the case of the simplest model the
solutions differ considerably from the ones obtained by, e.g., FEM. It also shown that when certain
additional strain tensor elements are taken into account, this, although correct from the mathematical
point of view, leads to incorrect solutions. One original contribution of this paper is the application of the
approximation method to solve the nonlinear problem. The method uses the Chebyshev series whose
expansion coefficients are determined from a certain system of recurrence equations. The method
enables one to solve equations with variable coefficients. As shown in the previous papers by the author,
in the case of solutions to linear problems this method leads to very accurate (also in comparison with
analytical solutions) results. The other original contribution is the demonstration of the influence of the
particular nonlinear strain tensor components on the solutions to the analyzed problems.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of static and dynamic problems in mechanics, with
geometrical nonlinearity taken into consideration, has been the
subject of numerous investigations and papers. Since it is (usually)
impossible to obtain an exact analytical solution to the differential
equations describing the problems, the latter are interesting from
the theoretical point of view. The analysis of the problems is also
important from the practical point of view since there is a need to
more accurately describe the phenomena taking place in real
structures in which considerable displacements or deformations
appear. Such structures are becoming increasingly common owing
to the advances in materials engineering.

The influence of geometric nonlinearity connected with large
displacements on the behavior of bar structures has been studied by
many authors. Since the number of works dealing with this subject is
very large, this survey is limited to only a few selected papers on
Timoshenko beams. Pai and Plazotto in [1] used the multiple shooting
method to numerically verify a nonlinear elastic cantilever bar model

and the associated theoretical solutions. Mohyeddin and Fereidoon in
[2] considered the large deflections of a straight prismatic shear-
deformable beam resting on simple supports at both ends and
subjected to a point load at its midspan. Tang et al. in [3] studied free
vibration of non-uniform functionally graded beams via the
Timoshenko beam theory. Capsoni et al. in [4] considered the dynamic
response of a Timoshenko beam with distributed internal viscous
damping. Wang and Chou in [5] analyzed the problem of a mass
moving on a beam and studied the influence of the beam's non-
linearity andmass on the response of the structure. Also Mamandi and
Kargarnovin [6] analyzed the behavior of an isotropic prismatic
Timoshenko beam loaded with a moving mass. In [7] Simsek
presented an analysis of the nonlinear behavior of the Timoshenko
beam under a moving harmonic load. Similar problems were studied
by Guo and Zhong [8]. Using the differential quadrature method for a
simply supported beam with nonslidable ends they obtained interest-
ing results showing the influence of nonlinearity on the frequency of
vibrations depending on the amplitude of the latter. Ghayesh and Balar
in [9] compared two nonlinearity models describing the Timoshenko
beam moving in the direction consistent with its longitudinal axis. In
[10] Ghayesh and Amabili considered the stability of the moving
Timoshenko beam. Ansari et al. [11] and Asghari et al. in[12] used
modified nonlinear Timoshenko beam models to describe the
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behavior of nanobeams, including the loss of stability with the post-
buckling stage taken into account. Aristizabal-Ochoa in [13] analyzed
the lateral stability and induced bending moments, shears, and
second-order deflections in columns with initial geometric imperfec-
tions and nonlinear semirigid connections subjected to axial load at
both ends and lateral load at the top ends. Xia et al. in [14] studied the
nonlinear bending, the post-buckling behavior and the free vibration
of microbeams. They analyzed a simply supported beam with non-
slidable supports. Similar problems for carbon nanotubes were solved
by Yang et al. in [15]. A solution to the nonlinear vibration problem by
means of the nonlinear finite element method was presented by
Gunda et al. in [16]. The problem of the nonlinear vibration of the
Timoshenko beam-column partially supported on the tensionless
Winkler foundation was described by Sapountzakis and Kampitsis in
[17]. The influence of shear deformation on the tangential displace-
ments of the cantilever beam was described by Sapountzakis and
Mokos in [18].

The analyses presented in the above papers were for prismatic
beams. The common characteristic of most of the papers is that only
component W 0� �2

=2 (where W represents the transverse displace-
ment of the beam) was used to describe geometric nonlinearity.

This paper presents and compares solutions to the problem of
the statics of a beam described according to Timoshenko theory for
different geometric nonlinearity models. The models differ in the
complexity of the nonlinear part of the strain tensor. The beam is
nonprismatic and it is analyzed assuming different configurations
of its support. It is shown that for certain boundary conditions the
usually adopted simplified nonlinearity model (nonlinearity
described by only the W 0� �2

=2 component) leads to incorrect
results. Also the problem of the loss of stability of a nonprismatic
bar with a preliminary geometric imperfection, loaded with an
axial force is analyzed. The obtained results are compared with the
results yielded by the finite element method.

In order to solve the above problems the linearization of
nonlinear differential equations by means of the iteration New-
ton–Kantorowicz method [19] is used. The method reduces the
starting equations to a sequence of approximations in the form of
ordinary differential equations. The theorem put forward by
Paszkowski [19], which describes the method of solving linear
ordinary differential equations with variable coefficients by means
of the Chebyshev series, is introduced into the above equations.
The method comes down to the derivation of recurrent relations in
the form of an infinite system of algebraic equations, the solution
to which are the coefficients of the series expansions of the sought
functions. The method is also described in the present author's
paper [20]. Owing to the general character of the method, by
deriving recurrent formulas for a particular problem (a given
system of ordinary differential equations) one can solve the
problem for different geometric and material parameters.

2. Problem formulation

The subject of the considerations is a nonprismatic Timoshenko
beamwith a rectilinear axis, loaded with forces r Xð Þ tangent to and

forces p Xð Þ normal to the beam axis, and with bending moments
m Xð Þ. A schematic of the system is shown in Fig. 1.

In the case of the Timoshenko beam, the total displacements in
point (X, Y) are defined by formulas:

uX X;Yð Þ ¼U Xð Þ�YΦ Xð Þ; uY X;Yð Þ ¼W Xð Þ ð1Þ
Using relation (1) and formula eij ¼ eji ¼ 1=2 ui;jþuj;iþuk;iuk;j

� �
one gets the following nonzero strain tensor components

eXX ¼ uX;Xþ1
2 α u2

Y ;Xþβ u2
X;X

� �
¼U 0 �YΦ0 þ1

2α W 0� �2h i
þ1

2β U0� �2�2U 0YΦ0 þY2 Φ0� �2h i

eXY ¼ eYX ¼ 1
2 uX;Y þuY ;XþγuX;XuX;Y
� �¼ 1

2 �ΦþW 0� �þ1
2γ �U 0ΦþYΦ0Φ
� �

eYY ¼ 1
2δu

2
X;Y ¼ 1

2δΦ
2

ð2Þ
Parameters α;β; γ; δ connected with geometric nonlinearity

will be used to study the influence of the individual nonlinear
components on the solution of the analyzed systems. In most of
the works known to the authors only the component connected
with α is taken into account. As shown later in this paper, the use
of only this component in the description of the systems and the
omission of the other components (α¼ 1; β¼ 0; γ ¼ 0; δ¼ 0)
results in considerable differences between the solutions.

The elastic strain energy (potential energy) of the system is
expressed by the formula

U ¼ 1
2

Z
V
eijσijdV ð3Þ

where: i; j¼ X; Y and

σXX ¼ EeXX ; σXY ¼ σYX ¼ 2GeXY σYY ¼ EeYY ð4Þ
Having substituted relation (4) into formula (3) one gets the
following formula for the elastic strain energy of the system

U ¼ 1
2

Z
V
E eXXeXXdVþ1

2

Z
V
2G eXYeXYdVþ1

2

Z
V
2G eYXeYXdVþ1

2

Z
V
E eYYeYYdV ð5Þ

The work of an external load, assuming that the latter is applied
to the beam axis, is defined by the formula

W ¼
Z þa

�a
pWþrUþmΦð ÞdX ð6Þ

Using the principle of virtual work δ U�Wð Þ ¼ 0, having intro-
duced dimensionless variables and functions x¼ X=a; y¼ Y=a;

u¼U=a; w¼W=a; φ¼Φ; EI ¼ EI0 EI; EA ¼ EI0=a2EA; EII ¼
EI0 a2EII, GA ¼ EI0=a2GA; GI ¼ EI0GI, p¼ P0

a p; r¼ P0
a r; m¼ P0a

a m;

and dimensionless parameter n¼ P0a2=EI0, where P0 ; EI0 are
reference quantities, one ultimately gets the following nonlinear
system of displacement equations (in order to simplify the nota-
tion the overlines in the formulas are subsequently omitted)

kGAw″þkGA0w0 �kGAφ0 �kGA0φ

þα EA0w0u0 þEAw0u″þEAw″u0� �þα2 1
2
EA0w03þ3

2
EAw02w″

� 	

þαβ
1
2
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2
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2
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�
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2
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Fig. 1. Schematic of nonprismatic Timoshenko beam with rectilinear axis.
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