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a b s t r a c t

The asymmetric bifurcation problem for a shallow spherical cap is examined. The applied pressure can
act either external or internal to the cap and both cases are treated here. Assuming a non-linear axi-
symmetric basic state, the linearised bifurcation equations for the pressurised shell are investigated in
the limit when the thickness of the cap is much less than the maximum rise of the shell mid-surface.
Within this regime the wrinkling patterns in both cases are confined to a narrow zone near the edge of
the shell, making it possible to solve asymptotically the corresponding equations and derive analytical
predictions for both the critical pressure and the corresponding number of wrinkles. Some comparisons
with direct numerical simulations are included as well.

& 2016 Published by Elsevier Ltd.

1. Introduction

Interest in the buckling of an externally pressurised shallow
spherical cap was originally motivated by research into the
behaviour of a complete spherical shell subjected to the same type
of loading. Experimental evidence indicates that the full shell
deforms and is susceptible to a mode characterised by a large
number of adjacent circular dimples that cover the entire surface
of the sphere [1], thereby giving an appearance not dissimilar to
that of a golf ball. Since each of the buckles subtends only a small
solid angle at the centre of the sphere, it was a small step to
conclude that an understanding of the shallow cap problemwith a
clamped edge might shed light on the behaviour of spherical
shells. Of course, this analogy between the two configurations is
only partially valid, but the buckling and post-buckling behaviours
of spherical caps have remained a classic topic and received a
considerable amount of attention in the literature (e.g., see the
recent survey [2] and the references therein). Much of this interest
can be traced back to the widespread use of spherical structural
elements, with geometries ranging from hemispherical to rea-
sonably shallow. For instance, shallow and deep spherical caps are
found extensively in powered submersibles [3], while in the
nuclear power industry they are used in pressure safety devices

[4,5]. Very recently shallow spherical caps have found increasing
applicability in the design of transducers (e.g., [6]).

When subjected to a uniform external pressure field (i.e.,
directed towards the centre of curvature of the cap), a shallow
spherical cap can display two distinct modes of deformation, as
illustrated in the schematic Fig. 1. So-called snap-through buck-
ling, as illustrated in the left window, is characterised by a sudden
reversal of curvature over a small region near the apex and, typi-
cally, involves large displacements. This type of instability is the
more studied case because the deformation experienced by the
shell is axisymmetric and the governing equations are ordinary
rather than partial differential equations. Detailed historical sur-
veys regarding the experimental development of this problem can
be found in the books by Bushnell [1] or Singer et al. [7] while
theoretical aspects are reviewed by Shilkrut [8], with additional
excellent accounts being found in [9,10].

Snap-through buckling is usually associated with the presence
of a limit point on the load–(apex) displacement curve for the cap,
although the instability is sometimes triggered before that point is
reached. Loss of stability through this route only occurs over a
relatively narrow range of values of the height-to-thickness ratio
of the cap. If this ratio is very small then no instability occurs,
whereas for larger values the shell tends to experience azimuthal
buckling or wrinkling, as illustrated in the right window of Fig. 1. If
the aforementioned ratio is large (C15 or greater) then the
wrinkles tend to concentrate near the shell edge. The governing
equations describing this type of bifurcations can still be reduced
to ordinary differential equations due to the regular nature of the
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wrinkling pattern, but they are of a much higher order than those
for snap-through buckling.

Weinitschke [11] was the first to systematically calculate the
critical pressures that trigger asymmetric buckling in shallow
spherical caps. He adopted power series representations for both
the non-linear basic state and the bifurcation equations, but the
values predicted by his approach turned out to be quite low
compared with those seen in practice. Huang [12] revisited the
same problem but replaced the power series with a finite-
differences numerical scheme that allowed more accurate results
to be derived. Archer and Famili [13] confirmed the improved
accuracy of Huang's results by using an alternative approach to
buckling based on dynamical bifurcation equations. This involved
examining the asymmetric frequency spectrum corresponding to
small free vibrations of the shell in the neighbourhood of the non-
linear axisymmetric equilibrium state. The buckling mode and
corresponding critical load were deduced by observing the van-
ishing of a particular frequency. These authors also developed a
load-perturbation approach [14] to compute numerically the
incipient stage for the asymmetric post-buckling response. Fitch
[15] modified Huang's numerical solution to account for the pro-
blem when a vertical load concentrated at the apex of the cap is
applied, and concluded that the bifurcation pattern is char-
acterised by between three and five circumferential waves. This
continues to be the case even for large height-to-thickness ratios
but in this limit the deformation is confined near the apex rather
than the edge of the shell. He also used a Lyapunov–Schmidt
scheme to compute the initial post-buckling behaviour and
established that the bifurcation is super-critical, with the con-
sequence that the cap under a concentrated load is an
imperfection-insensitive structure.

The related situation when the shallow spherical cap is sub-
jected to a pressure acting in the opposite direction, that is from
the inside of the cap, has received considerably less attention. This
configuration, which we shall henceforth refer to as the internally
pressurised shell, was studied numerically by Shilkrut [8,16] who
seems to have been the first to point out that these structures
undergo asymmetric buckling that is sometimes localised near the
rim of the shell. Since most of the numerical information in his
book [8] is presented in terms of the so-called ‘deformation maps’
it is somewhat arguable as to the extent to which the analogy
between the externally and internally pressurised shallow sphe-
rical caps can be pursued. One aim of our present study is to throw
some more light on the possible connections between the two
problems by conducting an in-depth numerical exploration, and
thereby establish the asymptotic structure of the corresponding
bifurcation equations when the height-to-thickness ratio is large.

Additional motivation is provided by some recent related work
[18,19] in which we explored the edge-wrinkling of pressurised
thin elastic plates. As a flat circular plate may be thought of in
terms of a degenerate spherical cap, it is of interest to gain some

further understanding of the similarities and differences between
the two configurations in the context of asymmetric bifurcations.
The transition from shell to plate seems to have received scant
attention in the literature although a noteworthy exception is the
intriguing work [20]. In this study a particular type of spherical cap
was pulled at the rim (see [21] for details) but deformations were
restricted to axisymmetric forms.

To keep the paper reasonably self-contained, we commence our
study by reviewing the key equations of interest and identify some
suitable dimensionless parameters. As shown in Sections 2 and 3
the externally and internally pressurised shallow shell problems
can be described by almost the same differential equations, with
the only discrepancy arising from a sign change that indicates the
direction of the applied pressure (see comments immediately after
Eq. (2.5)). The boundary conditions for the two problems are
somewhat different and these are spelled out in detail in those
introductory sections. We proceed in Section 4 to conduct a
numerical investigation of the dependence of the lowest critical
wrinkling pressure on various quantities of interest. Further
numerical work provides evidence as to the mechanisms respon-
sible for the localisation of the wrinkling patterns, and samples of
representative eigenmodes obtained. Guided by the numerical
evidence of Section 4, we then discuss the asymptotic structure of
the externally pressurised shallow cap in Section 5 and compare
with the results of the numerical simulations. A parallel asymp-
totic investigation is carried out in Section 6 for the internally
pressurised shell. The paper concludes with a discussion of our
main findings and some remarks on possible extensions.

2. The basic state

We consider a shallow spherical cap of uniform thickness h40,
whose middle surface can be represented by the elliptic para-
boloid z¼H 1� r=a

� �2h i
, where H is the rise of the middle surface

at the centre, and a denotes the base radius. The geometry of the
configuration is sketched in Fig. 2; with our chosen dimensions
the curvature radius of the shell is R� a2=ð2HÞ and the cap is
shallow so long as 0oh=R⪡1. The linearly isotropic elastic material
of the spherical cap is described by Young's modulus E and the
Poisson ratio ν. Our two problems of interest are distinguished by
the direction of application of the uniform pressure. In the first
case, the shell experiences an external pressure P normal to its
surface (see Fig. 3(a)), and we shall refer to this problem as Cð�Þ

sph.

The second situation, as depicted in Fig. 3(b) and denoted by Cðþ Þ
sph ,

is the far less studied problem of an outwardly pressurised sphe-
rical cap. Finally, it will be further assumed that suitable edge
restraints are applied, and this will be made more precise shortly.

The starting point for setting up the relevant bifurcation pro-
blem is the well-known Donnell–Mushtari–Vlasov (DMV) shallow

Fig. 1. An illustration of the two principal modes of instability experienced by an externally pressurised spherical shell: snap-through buckling (left), and asymmetric
wrinkling (right); the deformation modes are not to scale.
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