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a b s t r a c t

Collagen fibrils with multilayered helical structures widely exist in biological soft tissues, e.g., blood
vessels, tendons, and ligaments. Understanding the mechanical properties of this kind of chiral materials
is not only essential for evaluating the mechanical behaviors of the host tissues but also of significance
for medical engineering, clinical diagnosis, and surgical operation. In this paper, a theoretical model is
presented to investigate the hyperelasticity of biological soft fibers with multilayered helical structures.
The effects of the initial helical angle, number and handedness of the fibers in each ply on the mechanical
response of the material are examined. Our analysis reveals a switch of contact modes between two
neighboring layers, which may greatly alter the overall non-linear response of the material. The Poisson's
ratio of such a multilayered string can be greater than 0.5. The obtained results agree with relevant
experiments of soft tissues. This work sheds light on the non-linear mechanics of chiral materials and
may also guide the design of biomimetic materials.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Chiral materials widely exist in biological organisms and tis-
sues. A few examples are spirally striated muscle cells of inverte-
brates [1], helicobacter pylori [2], spasmoneme of Vorticella con-
vallaria [3], flagella filaments of bacteria [4], and fronds of emer-
gent aquatic macrophytes [5]. Tridimensional biological archi-
tectures are naturally constructed from lower dimensional chiral
materials by, e.g., structural lamination and hierarchy. Of particular
interest here are biological soft tissues with multilayered helical
structures. Owing to their unique geometric features, these
structures may have some unusual mechanical and physical
properties and, thereby, enable a series of essential biomechanical
functions. For instance, flexible hydrostats such as sea anemones,
earthworms, nematodes, echinoderm tube feet, embryonic noto-
chord of frogs, phallus of ducks, and some vermiform animals are
generally reinforced by laminated helical fibers, which are also
referred to as hydrostatic skeletons [6–11]. Many ectothermic
organisms and soft-bodied animals rely on hydrostatic skeletons
for the functions of, for instance, support, movement, muscular
antagonism, and muscle contraction [12].

Collagen fibrils, the main load-bearing element in a diversity of
soft tissues, are ubiquitous in helical forms in, e.g., blood vessels,
tendons, ligaments, muscles, skins, and articular cartilages [13,14].
For example, blood vessel walls were modelled as multilayered
helical structures consisting of collagen fibers [15,16]. On the basis
of experimental observations and measurements [17], Holzapfel
et al. modeled the human brain arteries as a two-layered, thick-
walled, and circular tube, each layer of which contains a certain
number of helical collagen fibers [18,19]. Gasser et al. found that in
the media of an artery wall, collagen fibers are arranged into two
spirally distributed families [20]. Recently, Flamini et al. divided an
aortic wall into six layers and determined the fiber orientation in
fresh and frozen porcine aorta by using the diffusion tensor ima-
ging technique [21].

Tendons and ligaments are fibrous, densely connective soft
tissues capable of maintaining stability and functions of organ
joints [22,23]. The fibers in tendons and ligaments consist of
closely-packed collagen fibrils embedded in a proteoglycan rich
matrix. It was histologically evidenced that the collagen fibrils in
the patellar tendons and anterior cruciate ligaments of both
human [24] and canine [25] assume a helical arrangement. By
using polarization microscopy, it was observed that the collagen
bundles are spirally distributed in both pig chordae tendineae [26]
and rat calcaneal tendons [27]. Non-linear constitutive models
were established by assuming the collagen fibrils as a cylindrical
helical structure [28–30]. Finite element analysis demonstrated
that the helical structural model of collagen fibrils is responsible
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for both the non-linear stress–strain behavior and large Poisson's
ratios of tendons and ligaments [22].

It is of significance to develop a constitutive model for the
highly non-linear mechanical behavior of biological soft tissues
reinforced by collagen fibrils [18,31–33]. To illustrate the typical J-
shaped stress–strain curve of such soft tissues as skins, the
arrangement of their collagen fibrils was generally assumed to be
straightened from a disordered to an ordered phase with
increasing strain. This empirical explanation ignored the details in
the deformation of filaments. To date, the relation between the
hyperelastic mechanical response of collagen fibrils and their
multilayered helical structures still remain elusive.

In the past decades, much effort has been directed toward
exploring the unique geometry and linear elastic property of
helical structures [34–50], while few works have addressed their
non-linear mechanical behaviors. Wilson and Treloar studied, both
theoretically and experimentally, the mechanical properties of
yarns consisting of two helical rubber rods [51]. Based on the
assumption of continuous stress distribution, Treloar developed a
non-linear elastic theory for the multifiber yarns and cords [52].
For rubber yarns consisting of a few fibers, Wilson studied several
specific cases where the fibers were arranged in discrete layers
[53]. Due to the complexity of the geometric and material non-
linearity of multilayered helical structures, there is still a lack of
fine theoretical models to predict their hyperelastic behavior.

In this paper, the mechanical behavior of string-like biological
soft tissues with multilayered helical structures is theoretically
investigated. This paper is outlined as follows. In Section 2, the
hyperelastic responses of a straight fiber subjected to axial tension,
torsion, and bending are derived. In Section 3, the internal forces
and deformations of each fiber in a chiral string are formulated by
considering the interaction between neighboring fibers. In Section
4, the effect of microstructural parameters on the mechanical
properties of multilayered strings is analyzed. Finally, the main
conclusions drawn from this study are summarized.

2. Analysis of a hyperelastic fiber

In this study, we consider strings with multilayered helical
structures. For illustration, Fig. 1 shows a straight string consisting
of four layers of tightly winded fibers. Assume that all filaments
are infinite in length and have a circular cross-section, and the
material is hyperelastic, homogeneous, and isotropic. Due to the
complex geometry and constitutive relation, it is hard to directly
analyze the hyperelastic mechanical behavior of a laminated
helical architecture. By comparing the experimental and theore-
tical results, Wilson and Treloar demonstrated that the finite
deformation of a hyperelastic fiber can be decomposed into a few
simple cases, including axial tension, torsion, and bending [51].
Therefore, we first investigate the static responses of an individual
fiber in these cases, and then the results are used to derive the
overall property of a multilayered string. For four representative
hyperelastic constitutive models, we provide the explicit expres-
sions of the force–displacement relations.

2.1. Axial tension and torsion

First consider a straight, cylindrical fiber undergoing large
deformation due to coupled axial tension and torsion. Refer to two
coincident cylindrical polar coordinate systems XI

n o
¼ R;Θ; Z
� �

and xi
� �¼ r;θ; z

� �
, where GIf g and gi

� �
(I; i¼ 1;2;3) are their

covariant basis vectors, respectively. The former coordinate system
is used in the reference configuration, while the latter is used in
the deformed and current configuration. During the deformation,
the fiber keeps straight and its centerline is along the z axis. Let λz ,
λr , and Δτ denote its axial elongation ratio, transverse contraction
ratio, and axial torsional angle per unit length, respectively. With
increasing λz , the fiber radius shrinks as rf ¼ λrrf 0 . Throughout this
work, the subscript 0 indicates the parameters in the reference
configuration. The deformation of the fiber is described by

x1 ¼ λrX1; x2 ¼ X2þΔτλzX3; x3 ¼ λzX3: ð1Þ
The covariant and mixed-variable components of the left Cau-

chy–Green deformation tensor B¼ FUFT with respect to the
coordinate system xi

� �
are

Bij
h i

¼
λ2r 0 0

0 λ2r r
�2þΔτ2λ2z Δτλ2z

0 Δτλ2z λ2z

2
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3
775; ð2aÞ

Bi
:j
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2
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3
775; ð2bÞ

where F¼ ∂xi=∂XIgiG
I is the deformation gradient tensor. Using Eq.

(2b), one can formulate the principal invariants I1, I2, and I3 of the
deformation tensor B as

I1 ¼ 2λ2r þλ2z þΔτ2λ2z r2; I2 ¼ 2λ2r λ
2
z þλ4r þΔτ2λ2r λ

2
z r

2; I3 ¼ λ4r λ
2
z : ð3Þ

Assume that the material is incompressible, that is, I3 ¼ 1.
Therefore, λr ¼ λ�1=2

z , and the first two principal invariants I1 and
I2 are simplified as

I1 ¼ λ2z þ2λ�1
z þΔτ2λ2z r2; I2 ¼ 2λzþλ�2

z þΔτ2λzr2: ð4Þ
The Cauchy stress tensor σ in the fiber is correlated with the

deformation tensor B by the following constitutive relation [54]

σ¼ �plþ2
∂W
∂I1

B�∂W
∂I2

B�1
� �

; ð5Þ

where p is the hydrostatic pressure, l the second-order unit tensor,
and W the elastic strain energy density function. Substituting Eq.
(2) into (5) and using λr ¼ λ�1=2

z , we obtain

σ11 ¼ �pþ2
∂W
∂I1

λ�1
z �∂W

∂I2
λz

� �
; ð6aÞ

σ22 ¼ �pr�2þ2
∂W
∂I1

λ�1
z r�2þΔτ2λ2z

� �
�∂W

∂I2
λzr�2

� 	
; ð6bÞ

σ33 ¼ �pþ2
∂W
∂I1

λ2z �
∂W
∂I2

λ�2
z þΔτ2λzr2

� �� 	
; ð6cÞ

σ23 ¼ σ32 ¼ 2
∂W
∂I1

Δτλ2z þ
∂W
∂I2

Δτλz
� �

; ð6dÞ

σ12 ¼ σ21 ¼ σ13 ¼ σ31 ¼ 0: ð6eÞ
In the absence of body force, the stress equilibrium requires

∂σ11

∂r
þσ11�r2σ22

r
¼ 0: ð7Þ

Fig. 1. Model of a string with multilayered helical structures.
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