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a b s t r a c t

This paper focuses on thoroughly exploring the finite-time transient behaviors occurring in a periodically
driven non-smooth dynamical system. Prior to settling down into a long-term behavior, such as a per-
iodic forced oscillation, or a chaotic attractor, responses may exhibit a variety of transient behaviors
involving regular dynamics, co-existing attractors, and super-persistent chaotic transients. A simple and
fundamental impacting mechanical system is used to demonstrate generic transient behavior in an
experimental setting for a single degree of freedom non-smooth mechanical oscillator. Specifically, we
consider a horizontally driven rigid-arm pendulum system that impacts an inclined rigid barrier. The
forcing frequency of the horizontal oscillations is used as a bifurcation parameter. An important feature
of this study is the systematic generation of generic experimental initial conditions, allowing a more
thorough investigation of basins of attraction when multiple attractors are present. This approach also
yields a perspective on some sensitive features associated with grazing bifurcations. In particular, super-
persistent chaotic transients lasting much longer than the conventional settling time (associated with
linear viscous damping) are characterized and distinguished from regular dynamics for the first time in
an experimental mechanical system.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamical systems exhibiting discontinuous properties have
been a rich area of research [1–16], and the range of possible
behaviors in the vicinity of bifurcations is carefully described in
[17–19]. Traditional studies tend to focus on steady-state behavior
and local bifurcations, and the vast majority of such work has been
based on analysis and numerical simulations. This paper carefully
examines practical aspects of transient dynamics, and uses an
experimental impacting mechanical system as a testbed to dis-
tinguish different classes of behaviors that can occur. We also
explore the operational differences in finite time-series data
between super-persistent transients and what might con-
ventionally be interpreted as steady oscillations.

Because relatively few experimental studies have been con-
ducted on chaotic transients in non-smooth systems, this paper
will shed light on systems exhibiting grazing bifurcations and
super-persistent chaotic transients [20]. A more thorough experi-
mental protocol will be demonstrated to detect the isolated

remote attractors, that is, behaviors not ordinarily revealed by the
quasi-static continuation (sweeping up/down) of a system with
respect to a bifurcation parameter.

Monitoring the behavior of transients induced by small per-
turbations is the cornerstone of linear stability theory. Here, we
extend this notion to include large perturbation-induced tran-
sients (more properly termed disturbances) to augment the more
familiar bifurcation diagram [21]. Generating an ensemble of
initial conditions can be challenging in experimental studies but is
shown to be a very valuable element for exploring the global
behavior in the system.

2. Experimental system

Our experimental system consists of a hard rubber ball (dia-
meter 63 mm, weight 145 g) attached to a steel rigid-arm pen-
dulumwhose pivot is mounted on a horizontal shake table [22,23].
The motion of the pendulum was recorded as time series of the
angular position, θðtÞ. A rigid wall is placed such that at an angle of
θwall ¼ �301, the mass at the end of the pendulum arm comes in
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contact with this fixed barrier. Schematic and photographic images
of this system are shown in Figs. 1 and 2 respectively.

The apparatus is attached to a Scotch-yoke forcing mechanism
[24] capable of supplying a harmonic excitation to the base over
the range of forcing frequencies ωf ¼ 0:2 to 2 Hz.1 The system was
designed so that the natural frequency for resonance of the line-
arized low-amplitude motion of the pendulum is in this range

(ωn � 0:96 Hz). This range gives us access to the broad array of
non-linear large-amplitude behavior involving impacts occurring
beyond the fundamental grazing bifurcation, where θ¼ θwall is
first achieved.

The motion of the pendulum arm is measured to high accuracy
using a quadrature encoder. A tachometer is used to extract the
instantaneous position of the pendulum at a given forcing phase.
The position at a quarter-cycle later, τ¼ 1=ð4ωf Þ, is also extracted,
since subsequent results utilize time-lag embedding, a convenient
means of recreating the phase trajectories as well as defining a
Poincaré section – an especially useful means of examining
dynamic behavior [25].

3. Mathematical model

The system is driven by the imposed horizontal motion of the
base, given by xf ðtÞ ¼ Af sin ðωf tÞ, where Af ;ωf are respectively the
forcing amplitude and frequency. Then the governing equation of
motion for the system can be obtained from Hamilton's principle
with an energy dissipation term to model the damping due to
friction [23],

d2θ

dt2
þω2

n sin ðθÞþ
Afω2

f

ℓ
sin ðωf tþϕÞ cos ðθÞ ¼ �Dðθ; _θÞ; ð1aÞ

where ℓ is the effective length of the pendulum and ωn is the
natural frequency based on this length and the gravitational
acceleration, ωn ¼

ffiffiffiffiffiffiffiffi
g=ℓ

p
.

Damping, D, in (1a) is modeled by contributions from linear
viscous friction and Coulomb friction [26], both assumed to be
acting at the pendulum's pivot,

Dðθ; _θÞ ¼ 2ζωn
_θþμ _θ

2þω2
n cosθ

� �
sgnð _θÞ; ð1bÞ

where ζ and μ are friction constants.
Because of the fixed rigid barrier, the motion of the pendulum

is limited to θðtÞZ�301, see Fig. 1. For small θðtÞ (jθjo jθwall j )
there is no impact and the motion is fully determined by (1ab) and
will follow the smooth dynamics of a damped driven pendulum.
Under forcing yielding θ¼ θwall, impacts occur, with the minimal
case having zero-velocity impacts at grazing bifurcations. Impacts
of the pendulumwith the wall at time t (θðtÞ ¼ θwall) are treated as
instantaneous inelastic collisions with coefficient of restitution,
0rko1, such that the state immediately after impact is given by
θðtþ Þ ¼ θwall with

_θðtþ Þ ¼ �k _θðt� Þ: ð1cÞ
Values for the system parameters were measured from experi-
mental data and are assumed to be constant with respect to time,
see Table 1.

While it is reasonable to question whether the damping para-
meters might evolve slowly with wear and aging of the system and
generation of heat during long experiments, we argue that these
variations can be neglected based on the excellent agreement that

L

m

θ

g

A sin ω  tf
Front view

30o

Fig. 1. Geometry of the pendulum system: front view, orthogonal to the plane of
forcing.

Fig. 2. The experimental system. The Scotch-yoke forcing mechanism (rear) drives
the motion of the pendulum along parallel rails (foreground).

Table 1
System parameters.

Parameter Description

ℓ¼26.5 cm Pendulum arm effective length
ωn ¼ 0:9688 Hz Linear natural frequency

ζ ¼ 2:1� 10�2 Linear viscous damping ratio

μ¼ 6� 10�3 Non-dimensional Coulomb damping coefficient

θwall ¼ �301 Position of the fixed barrier
k¼0.557 Non-dimensional coefficient of restitution
Af ¼ 6:35 cm Non-dimensional amplitude

1 Note that we use Hertz for all frequencies rather than a non-
dimensional form.
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