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a b s t r a c t

We study the buckling bifurcation of a compressible hyperelastic slab under compression with sliding–
sliding end conditions. The combined series-asymptotic expansions method is used to derive the sim-
plified model equations. Linear bifurcation analysis yields the critical stress value of buckling, which
gives a non-linear correction to the classical Euler buckling formula. The correction is due to the geo-
metrical non-linearities coupled with the material non-linearities. Then through non-linear bifurcation
analysis, the approximate analytical solutions for the post-buckling deformations are obtained. The
amplitude of buckling is expressed explicitly in terms of the aspect ratio, the incremental dimensionless
engineering stress, the mode of buckling and the material constants. Most importantly, we find that both
supercritical and subcritical buckling could occur for compressible materials. The bifurcation type
depends on the material constants, the geometry of the slab and the mode numbers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the buckling and the post-buckling of a
compressible slab subjected to compressions with sliding–sliding
end conditions. We intend to obtain the critical stress of buckling
and the post-buckling solutions.

This problem is related to the celebrated Euler buckling for-
mula which gives the critical stress value of bars under compres-
sion (see [1]). In Euler buckling theory, all the buckling modes are
supercritical (see [2]). Euler buckling theory can predict the critical
stress values very well for materials with small deformation under
compression. Recently, some results were obtained for the non-
linear corrections of the Euler formula. For the incompressible
cylindrical tubes with sliding–sliding end conditions, Goriely et al.
[3] obtained a non-linear correction formula. For an incompres-
sible slab with sliding–sliding end conditions, Dai and Wang [4]
obtained a corrected buckling formula by using model equations
reduced from plane strain non-linear elasticity. For a compressible
slender column with sliding–sliding end conditions, Pascalis et al.
[5] obtained the non-linear correction by using incremental the-
ory. That correction is due to the geometrical non-linearities
coupled with the material non-linearities (the third-order elastic
constants). For a compressible slab with clamped–clamped end
conditions, Dai and Wang [6] obtained the critical stress values

and compared these values with those obtained from the Euler
formula numerically. Based on the prestressed problem, Dai et al.
[7] provided a criterion to predict the supercritical or subcritical
buckling for a two-dimensional slab composed of the compressible
neo-Hookean material. However, this criterion is complicated and
was not given explicitly. So it is of interest to find how the material
constants, the geometry of the slab and the mode numbers affect
the bifurcation type for general compressible materials. We intend
to find a simpler criterion here.

There are some theoretical analyses of this type of compression
problems in the literature (see [8–13], etc.). From linear theories, one
can only obtain the critical loads and eigenfunctions. Then there are
very few results about the analytical post-bifurcation solutions
except recently [4,7,14]. These results are obtained by using the
method of combined series-asymptotic expansions which was
developed in [15–17], etc. In [4,7], post-buckling behaviors are stu-
died for compression of incompressible and compressible slabs,
respectively. In [14], post-bifurcation solutions are obtained for
compression of a compressible hyperelastic tube. In the post-
bifurcation analysis, the authors found pitchfork and octopus bifur-
cations for thin tubes, which cannot be observed in the linear
bifurcation analysis. In this paper, not only we will obtain the critical
stress value of buckling, but we will also determine the bifurcation
types of buckling and obtain the post-buckling solutions.

The structure of this paper is the following. In Section 2, we give
the mathematical formulation of the problem. In Section 3, we
introduce the derivations of the model equations. In Section 4, we
study the bifurcations of the model equations under sliding–sliding
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end conditions. Linear bifurcation analysis yields the critical stress
values of buckling. Through non-linear bifurcation analysis, we
obtain the post-buckling solutions analytically and compare the
analytical solutions with the numerical solutions. Finally, we give
some conclusions in Section 5.

2. Mathematical formulation of the problem

In this section, we present the mathematical formulation of the
problem. The compression of a two-dimensional slab is regarded
here as a plane strain problem. As shown in Fig. 1, the slab is
compressed between two lubricated rigid bodies at X ¼ 0; l, and is
not allowed to deform in the Z-direction out of plane. We consider
the case that the slab is composed of a compressible isotropic
hyperelastic material with the strain energy function Φ. Let the
length of the rectangle be l and the thickness be 2a and let ðX;Y ; ZÞ
and ðx; y; zÞ denote the Cartesian coordinates of a material point in
the reference and current configurations, respectively. The axial
and lateral displacements are denoted by

UðX;YÞ ¼ x�X; VðX;YÞ ¼ y�Y ; ð1Þ
respectively. Then the deformation gradient tensor F is

F¼ ðUXþ1Þex � EXþUYex � EY þVXey � EXþðVY þ1Þey � EY þez � EZ ;

ð2Þ
where EX ;EY ;EZ and ex; ey; ez represent the orthonormal bases in
the reference and current configurations, respectively.

We denote by Ii ði¼ 1;2;3Þ as the three principal invariants of
the left Cauchy–Green deformation tensor B¼ FFT . Since we are
considering a plane strain problem, the strain energy function Φ
can be seen as a function of I1 and I2 only, since I3 ¼ I2� I1þ1 (see
[18]).

The first Piola–Kirchhoff stress tensor Σ containing terms up to
the third-order material non-linearity for an arbitrary strain
energy function can be calculated by a formula provided in [19]

Σ ij ¼ a1jilkdklþ1
2 a

2
jilknmdkldmnþ1

6 a
3
jilknmqpdkldmndpqþO jdij j 4

� �
; ð3Þ

where ðdijÞ is the displacement gradient tensor d¼ F�I, a1jilk, a2jilknm
and a3jilknmqp are elastic moduli defined by

a1jilk ¼
∂2Φ

∂Fij∂Fkl

����
F ¼ I

; a2jilknm ¼ ∂3Φ
∂Fij∂Fkl∂Fmn

����
F ¼ I

;

a3jilknmts ¼
∂4Φ

∂Fij∂Fkl∂Fmn∂Fst

����
F ¼ I

:

8>>>><
>>>>:

ð4Þ

Hereafter we use Φij to denote the i-th order derivative of Φ with
respect to I1 and j-th order derivative of Φ with respect to I2
evaluated at F¼ I. Then the elastic moduli in (4) can be expressed
in terms of Φij.

Here we study a static problem. The field equations (neglecting
the body force) are

∂ΣxX

∂X
þ∂ΣxY

∂Y
¼ 0; ð5Þ

∂ΣyX

∂X
þ∂ΣyY

∂Y
¼ 0: ð6Þ

Substituting the above stress components into (5) and (6), we
obtain two complicated coupled non-linear partial differential
equations.

Since there is no distributive loading on the lateral boundaries,
the stress components ΣxY and ΣyY should vanish there. We have
thus the following traction-free boundary conditions:

ΣxY ¼ 0 at Y ¼ 7a; ð7Þ

ΣyY ¼ 0 at Y ¼ 7a: ð8Þ
We will study the bifurcations of the field equations (5) and (6)

under traction-free boundary conditions (7) and (8) and sliding–
sliding end conditions.

3. Derivations of the model equations

In this section, we follow the combined series-asymptotic
method (see [15–17]) to derive the simplified model equations
for compressions of a compressible slab. First, through the fol-
lowing scalings:

U ¼ hu; V ¼ hv; X ¼ xl; Y ¼ yl; ε¼ h
l
; ξ¼ a2

l2
; ð9Þ

the system (5) and (6) and the conditions (7) and (8) can be non-
dimensionalized. The parameter h is the characteristic axial dis-
placement which can be regarded as the reduction of the distance
between two ends, and εwill be treated as a small parameter since
here the deformation is considered to be small. The over bars of x
and y are dropped hereafter for convenience.

We assume that the slenderness of the slab is small, so that ξ is a
small parameter. And then y is a small variable and uðx; yÞ and vðx; yÞ
have the following series expansions in the neighborhood of y¼0:

uðx; yÞ ¼ u0ðxÞþy2u2ðxÞþ⋯þδyðu1ðxÞþy2u3ðxÞþ⋯Þ; ð10Þ

vðx; yÞ ¼ δðv0ðxÞþy2v2ðxÞþ⋯Þþyðv1ðxÞþy2v3ðxÞþ⋯Þ; ð11Þ
where δ is a parameter and δh represents the characteristic deflec-
tion of the central axis.

Substituting (10) and (11) into the traction-free boundary
conditions, we arrive at four complicated equations containing ten
unknowns ðu0;…;u4; v0;…; v4Þ:

D1ðu0;u1;u2;u3; v0; v1; v2; v3ÞþOðξ2; εξ; ε2ξδ2Þ ¼ 0; ð12Þ

D2ðu0;u2;u4; v1; v3ÞþOðξ2; εξ; εξδ2Þ ¼ 0; ð13Þ

D3ðu0;u2; v1; v3ÞþOðξ2; εξ; εξδ2Þ ¼ 0; ð14Þ

D4ðu0;u1;u2;u3; v0; v1; v2; v3; v4ÞþOðξ2; εξ; ε2ξδ2Þ ¼ 0; ð15Þ
where Di ði¼ 1;2;3;4Þ are operators of the corresponding
functions.

To have a closed system, we substitute (10) and (11) into the
field equations (5) and (6) and the left-hand sides become two
infinite series in y. From the coefficients of y0, y1 and y2, we get six
equations with the same ten unknowns, which are very long and
not written out explicitly for brevity.

Then the field equations and the traction-free boundary condi-
tions are changed into a one-dimensional system of ten differential

X
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Fig. 1. Sketch map of a compressed slab.
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