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a b s t r a c t

The latest study of a model of heat and mass transfer for a catalytic reaction within a porous catalyst flat
particle (Journal of the Taiwan Institute of Chemical Engineers 48 (2015) 49–55 [7]) shows that this
model can be exactly solved when the reaction rate is taken linear term as f ðyÞ ¼ y, where y is heat within
porous catalyst particle. In this paper, the mentioned model is revisited by considering the power kinetics
nth order reaction rate instead of a linear reaction term. It is shown that the problem is still exactly
tractable. Furthermore, it is revealed that previous results can be recovered from this exactly solvable
generalization case. It is also proved that the problem might have multiple stationary solutions (unique,
dual and triple solutions) depending on the values of the parameters of the model.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The model of simultaneous mass and heat transfer within a
porous catalyst particle [1–7] is governed by the following system
of non-linear differential equations:
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with boundary conditions
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In Eqs. (1)–(2) the geometry of a particle is defined in terms of the
value of parameter a (a¼0 for a flat plate particle, a¼1 for a
cylindrical particle and a¼2 for a spherical particle) and γ is the
parameter describing energy of activation. β and ϕ represent the
parameters of heat evolution and Thiele's modulus, respectively.
Furthermore, NuM and NuH denote Sherwood and Nusselt numbers
and, f(y) is the reaction rate expression in where y is the heat
within porous catalyst particle.

In Ref. [2], the basic features of the solution space (such as
multiple solutions, the corresponding parameter ranges in which
they occur, detailed numerical results and examples) have been
reported by Hlaváček et al. The exact analytical solution of
Eqs. (1) and (2) has been given in the case that the reaction rate is
a linear term (first order reaction) as f ðyÞ ¼ y and the geometry of
the particle is a flat plate as in Ref. [7]. In that article, authors have
given a full discussion of existence and multiplicity of solutions
and, they have revealed that the problem may admit unique, dual
or even more triple solutions depending on the values of Thiele
modulus and other parameters of the model.

It is pertinent at this point to ascertain how reaction order
influences the extent to which conversion is retarded by back-
mixing. Since the mixing process essentially alters the con-
centration field within the reactor, intuition suggests that higher
the reaction order the greater the influence of backmixing upon
the reaction rate (and therefore conversion for a given contact
time). Intuition is readily supported by quantitative treatment in
this instance. Consider cases of zero, one-half, and second-order
kinetics. The extent to which backmixing influences the reaction
rate in each case is reflected in terms of the required ratio of
contact time in a continuous flow stirred-tank reactor (CSTR)
relative to that in a plug flow reactor (PFR) model for a given level
of conversion and temperature. Non-segregated flow will be
assumed in the CSTR analysis for simplicity. While differences
were demonstrated for non-linear kinetics between segregated
and non-segregated CSTR models, these are secondary in com-
parison with differences in PFR and CSTR performance [8].
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In the present work, the nth order power kinetics reaction rate,
i.e. f ðyÞ ¼ yn, is considered which is more general than that con-
sidered in Ref. [7] (first order reaction rate). We show that the
problem (1) and (2) is nevertheless exactly tractable in both cases:
(1) NuM¼NuH, and (2) NuMaNuH . As a matter of fact, the moti-
vation of present work has two features: The first one is to show
that the mentioned problem is exactly solvable and then, to give
exact analytical solution in an implicit form for further physical
interpretation (tt is worth mentioning here that to analyze exactly
the non-linear phenomena is of consequential matter in science
and engineering [9–11]). The second one, which concludes from
the first one, is to show that the problem has multiple stationary
solutions (unique, dual and triple solutions) depending on the
values of the parameters of the model (γ, β, λ¼ϕ2 and n). This
paper is organized as follows: the mathematical reformulation and
the solution procedure for obtaining exact solution are given
in Sections 2 and 4 for NuM¼NuH and NuMaNuH , respectively.
Sections 3 and 5 contain the graphical results and their discussion.
The concluding remarks are included in Section 6.

2. The exact analytical solution when NuM¼NuH

In this case, the problem (1)–(4) reduces to
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with boundary conditions

x¼ 0 :
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dx

¼ 0; ð6Þ

x¼ 1 : yþ 1
Nu

dy
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¼ 1: ð7Þ

Also, the relation between y(x) and τðxÞ is given by

τ¼ 1þβð1�yÞ: ð8Þ
As mentioned previously, we consider the case flat plate particle
(a¼0) and deal with the reaction rate expression in the form of
power kinetics i.e. nth order reaction rate f ðyÞ ¼ yn. In this case, the
reaction rate is proportional to the expression [2]

r� yn exp
γβð1�yÞ

1þβð1�yÞ

� �
: ð9Þ

The reaction rate will increase in the direction of increasing tem-
perature (or decreasing concentration) if:

dr
dy

o0: ð10Þ

By differentiating (9), condition (10) yields

n� γβy

1þβð1�yÞ� �2o0: ð11Þ

Let us assume that (10) holds, in a limiting case, at least at the
point x¼1; then for Nu-1 (i.e. for yð1Þ ¼ 1) we have γβ4n.
Finally, by denoting λ¼ϕ2, the problem is converted to
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� �
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dy
dx

ð0Þ ¼ 0; yð1Þ ¼ 1: ð13Þ

The above problem has been studied and solved numerically by
some researchers, in the case n¼1, through some methods such as
interval analysis and Modified Adomian Decomposition Method
(MADM) [6,12]. Ford and Pennline [5] have proved the existence

and uniqueness of the solution for this problem in the same case
(n¼1) on some domains for system parameters.

Consider a kind of generalization case of Eqs. (12)–(13) by
taking into account the original boundary condition (7) i.e.
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the problem (14)–(15) is equivalent to (12) and (13) when Nu-1.
By changing the function u¼ dy

dx, we have
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¼ du
dy

dy
dx

¼ u
du
dy

: ð16Þ

Therefore, Eq. (14) is converted to the following:

u
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� �
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which is the first order ordinary differential equation of a separ-
able type, then by integration and replacing u by dy

dx, it takes the
form

1
2
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dx
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¼ λIFðy;β; γ;nÞþC; ð18Þ

where C is the integral constant and IF is defined so that

dIFðy;β; γ;nÞ
dy

¼ ynexp
γβð1�yÞ

1þβð1�yÞ

� �
; ð19Þ

for example,
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