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a b s t r a c t

The Koiter–Newton method is a reduced order modeling technique which allows us to trace efficiently
the entire equilibrium path of a non-linear structural analysis. In the framework of buckling the method
is capable to handle snap-back and snap-through phenomena but may fail to predict reliably bifurcation
branches along the equilibrium path. In this contribution we extend the original Koiter–Newton
approach with a reliable and accurate bifurcation indicator which is based on an eigenanalysis of the
reduced order tangent stiffness matrix. The proposed indicator has a negligible numerical effort since all
computations refer to the reduced order model which is typically of very small dimension. The extension
allows the identification of bifurcation points and a tracing of corresponding bifurcation branches in each
sector of the equilibrium path. The performance of the method in terms of reliability, accuracy and
computational effort is demonstrated with several examples.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In aerospace engineering, many structures are prone to be
limited in their load carrying capability by buckling, while staying
in the linear elastic range of the material [1–4]. It is very important
to trace the complete equilibrium paths, i.e. load-displacement
curves, in order to know and to comprehend the characteristics of
structures subjected to loads [5–8]. For structural buckling two
main phenomena are generally recognized, namely limit-point
buckling and bifurcation-point buckling. The instability properties
of some structures may even include both buckling phenomena.
An accurate assessment of buckling is highly significant in the
structural design, since the load carrying capability of a structure
is largely overestimated if a bifurcation point that lies before the
limit point is missed during the non-linear path-following analy-
sis. The consideration of possible bifurcations during the path
tracing of the non-linear response of a structure includes two key
features, the detection of bifurcation points and the branch-
switching from one equilibrium path to another equilibrium
path of the structure. The implementation of the two features into

general path-following methods has created a number of available
numerical techniques for bifurcation analysis.

Non-linear path-following techniques, e.g. the arc-length
method and its variants [9–11], work well for applications where
pure limit-point-type buckling with a unique equilibrium path is
present, but have difficulties to converge to bifurcation points and
generally prevent an automatic switch from the pre-instability
path to one of the bifurcation paths. In general, a small physical
imperfection is introduced to allow a switch of the primary equi-
librium path to a neighboring bifurcated equilibrium path [1,2,12].
The approach bears the risk to influence the path prior to the
bifurcation point with changed characteristics of the considered
structure. Another, more accurate possibility to allow for a branch
switch at the bifurcation point is the consideration of a suitable
fictitious perturbation added to the equilibrium path near bifur-
cation points [13].

A modification of arc-length-type methods for reliable bifur-
cation analysis has been in the focus for many years and is
repeatedly addressed by many researchers. One popular procedure
[9,10] to detect the bifurcation point is to check the sign of the
determinant of the tangent stiffness at the current calculation step
which changes if either a limit point or a bifurcation point is
passed. However, the tracing analysis after the bifurcation point
cannot continue unless some further, usually computationally
expensive, analyses are taken into consideration. Similarly, the
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sign of stiffness parameters and eigenvalues of the tangent stiff-
ness matrix of the current analysis step are often used to analyze
the direction of the equilibrium path [14]. Feng et al. [15–17] took
the history of the current equilibrium path into consideration to
produce a reliable path direction prediction even in the presence
of bifurcations. Eriksson [18] used the scalar product of two path-
related measures, the critical eigenvector and reference load vec-
tor, to have a reliable bifurcation indicator which well distin-
guishes between bifurcation and limit points. To achieve a branch-
switching, Wagner and Wriggers [19] added the critical eigen-
vector as a perturbation to the primary path to shift one of the
possible bifurcation branches. Recently, Zhou et al. [13] proposed
an arc-length method combined with an eigenanalysis-based
branch-switching method to discover additional bifurcation
points and corresponding secondary paths of cylindrical panels.
The critical eigenvector obtained from the eigenanalysis is com-
monly used in the aforementioned computational procedures to
allow a tracing of the bifurcation branch after the bifurcation point
which requires the critical eigenvector to be updated in each
iteration step. However, it is not practical to do the eigenanalysis of
the stiffness matrix in each iteration step in the view of the tre-
mendous computational cost, especially for large-scale finite ele-
ment models. Noguchi [20,21] has proposed an innovative
eigenanalysis-free idea to extract the buckling mode for bifurca-
tion instability from the LDLT-decomposed stiffness matrix. Wardle
[22,23] proposed an asymmetric meshing technique(AMT) to deal
with the case that the bifurcation buckling in asymmetric mode
exists before the first limit point on the equilibrium path.

The reduction method based on the Rayleigh–Ritz or pertur-
bation techniques [24,25], which can reduce the number of
degrees of freedom in non-linear mechanics, is a valuable alter-
native for structural buckling analysis. Some of the reduction
methods [26–30] work in combination with path-following tech-
niques to trace the entire non-linear equilibrium path based on a
predictor-corrector approach. The prediction is achieved using an
asymptotic expansion [24,25,30] to reduce the number of
unknowns in the original equilibrium equations. The solution of
the reduced equations is regarded as a predictor for the real
equilibrium path. These methods often use the path derivative
[28,30] as the path parameter in the expansion of the equilibrium
equations, which causes difficulties near bifurcation points. Bou-
tyour, Vannucci and Jamal [31–33] have proposed a bifurcation
indicator to detect bifurcation points in the framework of the
Asymptotic Numerical Method (ANM) [24,34,30]. After introdu-
cing a fictitious perturbation force to the structure at a point of the
solution branch, the bifurcation indicator is expressed as a scalar
function to measure the intensity of the system response to per-
turbation forces. The value of this indicator is evaluated through
the path-following procedure and becomes zero exactly at the
bifurcation point. Recently, the bifurcation indicator that was
proposed by Boutyour et al. [33] has been successfully imple-
mented in various mechanical problems of thin films on compliant
substrates to detect multiple bifurcations [35,36]. In Boutyour's
work [33,37], the detection of a bifurcation point can also rely on
the analysis of the roots of the denominator of the Padé approx-
imants. In addition, Lopez [38] selected the expansion parameter
based on the residual vector, and Mottaqi [39] discussed some
other numerical techniques to detect the bifurcation point along
the equilibrium path, based on Potier-Ferry's work [34].

The Koiter–Newton method [40–42] is a recently proposed
reduced order modeling methodology to trace the entire equili-
brium path in a stepwise manner. At each step, the approach
combines a prediction using a non-linear reduced order model
(ROM) based on Koiter's initial post-buckling expansion [43–46]
with a Newton arc-length correction, thus allowing the algorithm
to use fairly large step sizes. The possibility of some perturbation

loads that may excite the secondary branches is taken into account
to deal with bifurcation-point-type buckling. We have found that
for an exactly perfect structure, i.e. a flat plat under axial com-
pression, the proposed method can directly trace one of the
bifurcation branches after the bifurcation point [42], with no need
to introduce any physical imperfection. The effectiveness of the
proposed method for the limit-point-type buckling has been
proven in [40], and a force imperfection model has been intro-
duced in [41] to show the ability of imperfection analyses. How-
ever, recently we noticed that if the structure bifurcates before the
limit point the proposed method may pass by the bifurcation
branch leading to an overestimated stability design. Hence, a
bifurcation indicator should be introduced in the Koiter–Newton
method to detect the bifurcation point and to allow tracing pos-
sible branches accurately.

The contribution of this paper distinguishes significantly from
previous publications in the strategy followed to find the bifur-
cation branches. Previously, these were found by the introduction
of perturbation loads, a strategy which may fail in the case that the
bifurcation branches lie before the limit point. In this paper we
overcome this shortcoming by using a bifurcation indicator based
on the eigenanalysis of the tangent stiffness. Before reaching the
first limit point the energy preserving properties of the system are
indicated by a positive definite tangent stiffness matrix, a property
which is lost with the appearance of instabilities in the structure
signaled by negative eigenvalues. Here, the tangent is obtained
from the reduced order model with, in general, less than 10
degrees of freedom. This fact allows the use of this bifurcation
indicator in each iteration step during tracing the equilibrium
path. In this respect, this method differs not only from the pre-
vious ones presented in [40–42] but also distinguishes from the
classical arc-length method, which always fails to deal with the
bifurcation-point-type buckling if no physical imperfection is
introduced. Another point which characterises this paper is the
use of the critical mode as the displacement perturbation at the
bifurcation point to let the primary path change into the expected
bifurcation branch. The proposed bifurcation indicator designed in
the framework of the Koiter–Newton method is also different from
the one proposed by Boutyour et al. [33] which is well adapted to
the Asymptotic Numerical Method. Boutyour's bifurcation indi-
cator introduces a fictitious perturbation force in the problem and
requires the computation of a second series at each step. The
indicator proposed in this paper is simpler with respect to
implementation aspects and the computation only refers to a
lower-order reduced order model.

The paper is organized as follows. The developed bifurcation
indicator in the framework of the Koiter–Newton method for
detecting bifurcation branches is presented in Section 2. In this
section we also briefly revisit the fundamental aspects of the ori-
ginal Koiter–Newton method to allow a clear comprehension of
the strategy and the mechanism of the proposed bifurcation
indicator. Numerical examples which demonstrate the success of
the method are provided in Section 3. We summarize the paper
and draw conclusions in Section 4.

2. A bifurcation indicator proposed in the framework of the
Koiter–Newton method

The Koiter–Newton method was proposed, similar to classical
path following techniques, as a step by step procedure to trace the
complete equilibrium path of a deforming structure. In each
expansion step of the Koiter–Newton method three basic steps are
involved: (1) construction of the reduced order model, (2) iterative
solution of the reduced order model, (3) correction of the pre-
dicted load-displacement step produced by the reduced order
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