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a b s t r a c t

We study the flow of a viscous fluid through a slender tapered tube whose radius may reduce to zero. The
vessel is closed at the end, so that the flow is made possible owing to the fact that a portion of the tube
wall is permeable. The smallness of the tube aspect ratio is exploited using an upscaling technique
leading to a degenerate differential equation for pressure. Solutions are found either in explicit form or as
power series expansions. This class of flows may represent, though in a largely approximated way, the
blood flow though a coronary artery.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Incompressible flows through tapered tubes have been studied
extensively, particularly in the framework of blood flow in stenosed
vessels. We quote the early papers [11,10] on Newtonian flows and
[13,12] on non-Newtonian flows. The experiments in [17] on blood
flow through tapered tubes stimulated various theoretical investiga-
tions. A comparison between Newtonian and non-Newtonian flows in
tapered tubes has been performed in [8], where the relevant literature
has been shortly reviewed. Recent papers on blood flow (with various
rheological structure) in arteries with stenosis are [2,9,14,5].

The biological background of the present study is still in the
framework of blood flow, but with the substantial difference that
the tapered vessel is closed at the end and the flow is exclusively
due to the permeability of part of the wall. This is a physiological
rather than pathological condition when we consider coronary
arteries, which narrow to the end and provide with blood the
capillary network of the myocardium through multiple branching
(we refer to the extensive paper by Dunker and Bache [4]). In a
rough scheme one could describe the blood outflow as due to a
partial permeability of the vessel wall, and the flow occurring in
the permeable membrane as driven by the pressure difference
between the inner vessel and the external region (whose pressure
is assumed to be uniform and constant). That said, it is quite clear
that the model we are going to discuss cannot be taken as a real
description of the blood flow in coronary arteries, for many

reasons, though at least some features of the coronary flow during
systole are captured. In view of such a correspondence we will
select all characteristic quantities in such a way that they are
relevant to coronary flow (see, e.g., [7]).

For the readers interested in the literature on modeling cor-
onary flow we quote [1,7,15].

Despite the many simplifications introduced, the fluid dynamical
problem we are going to study is quite complicated. Exploiting the
smallness of the aspect ratio (maximal radius/length), we use an
upscaling technique, in conjunction with the assumption of steady
flow, to obtain a boundary value problem for a degenerate differ-
ential equation for pressure, which is solved in some case in explicit
form, or more generally via classical power series expansions. Var-
ious geometrical shapes of the tube will be considered which give
rise to different qualitative behavior of the flow and also require a
different mathematical approach. Numerical examples are provided.
The mathematical technique employed generalizes the one adopted
in [6] for the study of flows in cylindrical tubes with porous walls.
Our analysis reveals that the behavior of pressure near the tip is
critically dependent on the tip shape.

2. The mathematical model

We consider a vessel with a thinning circular cross section. We
denote by zn, and rn the longitudinal and radial coordinates, and by
θ, θAð�π;π�, the angular variable. The vessel's length is1 Ln, and
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its internal radius is RnR znð Þ, where R zð Þ, is dimensionless,
decreasing, continuously differentiable and 0rR znð Þr1. We
assume that ε¼ Rn

Ln⪡1.
A Newtonian incompressible fluid, of constant density ρn and

viscosity μn, enters the tube through the inlet surface Γin at zn ¼ 0,
and leaks through a portion of the lateral surface

Γlat ¼ 0rxnrLn; rn ¼ RnR zn
� �

; θooθoθ1
� �

;

acting as a porous membrane characterized by a ratio2 Kn between
membrane permeability and membrane thickness (see Fig. 1).
Such a lateral flow is assumed to be Darcian, i.e. proportional, via
Kn, to the transmural pressure difference.

We denote by vn ¼ unezþvnerþwneθ , the fluid velocity within
the tube and by Vn

c , the characteristics longitudinal fluid velocity
(that can be evaluated once we have an estimate for the dis-
charge). A basic step in our investigation is to introduce a double
rescaling for the longitudinal and the transverse components

u¼ un

Vn

c
; v¼ vn

εVn

c
; and w¼ wn

εVn

c
;

so that vn ¼ Vn

c uezþεverþεweθ
� �

. Likewise we define x¼ xn=Ln

and r¼ rn=εLn. Concerning the fluid pressure, pn ¼ pn xn; rn; tnð Þ,
measured with reference to the external pressure (which we have
set equal to 0), we rescale it by pn

ref which we select imposing

πRn2Vn

c|fflfflfflffl{zfflfflfflffl}
inlet flow

¼ θ1�θo
� �

RnLn
Kn

μn
pn

ref|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lateral flow

;

namely

pn

ref ¼
επμnVn

c

θ1�θo
� �

Kn
: ð1Þ

The fluid mechanical incompressibility is expressed by

∇n � vn ¼ 0: ð2Þ
The non-dimensional version of (2) is

∂u
∂z

þ1
r
∂
∂r

r vð Þþ1
r
∂w
∂θ

¼ 0: ð3Þ

Neglecting gravity, the steady flow is governed by the Stokes
equation

�∇npnþμnΔn v!n ¼ 0: ð4Þ
The dimensionless form of (4) involves the dimensionless para-
meter

β¼ θ1�θo
� �

Ln2Kn

πRn3 ¼ θ1�θo
� �

π
Kn

ε2Rn
: ð5Þ

Assuming β¼O 1ð Þ, the dimensionless form of (4), in which the
O εð Þ terms are neglected (lubrication approximation), is

0¼ �1
β
∂p
∂z

þ 1
r2

∂2u

∂θ2þ
1
r
∂
∂r

r
∂u
∂r

� �
; ð6Þ

0¼ ∂p
∂r
; ð7Þ

0¼ ∂p
∂θ

: ð8Þ

It is interesting to remark that when βrO εð Þ, a condition of
negligible permeability, the zero order approximation of the
pressure gives ∂p

∂r ¼ ∂p
∂θ¼

∂p
∂z ¼ 0, namely a uniform pressure field

not generating any flow.
The boundary conditions that we impose on the vessel lateral

surface are

un � tθ ¼ un � tz ¼ 0; no�slip; ð9Þ

un � n¼ Knpnχ θo ;θ1½ � θ
� �

; outflux; ð10Þ

where:

� tθ , tz , and n are the tangent and normal unit vectors to the
vessel surface, respectively.

� χ θ
� �¼ 1 for θA θo;θ1

	 

, and χ θ

� �¼ 0 otherwise. Condition (10)
means that the vessel surface is permeable only for θorθrθ1,
and the flow is driven by the pressure difference with respect to
a far field.

We may have an estimate of β and Kn in a specific case on the
basis of the data reported in Table 1, compatible with the coronary
flux during systole.

Assuming ∂R
∂z ¼O 1ð Þ, the dimensionless form of (9) and (10),

approximated up to O εð Þ terms, is

ujr ¼ R ¼ 0; ð11Þ

wjr ¼ R ¼ 0; ð12Þ

vjr ¼ R ¼
π

θ1�θo
pχ θo ;θ1½ � θ

� �
: ð13Þ

Now, taking (11)–(13) into account, we integrate Eq. (3) over
the whole vessel section

R zð Þ
Z π

�π
vjr ¼ R|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
πp

dθþ
Z R zð Þ

0

Z π

�π
r
∂u
∂z

dr dθ¼ 0: ð14Þ

Next, recalling (7) and (8), we conclude that p¼ p z; tð Þ. So, con-
sidering Eq. (6), supplemented with boundary conditions (11) and
with the symmetry condition at r¼0, we obtain the following

Fig. 1. The strip Γlat is the permeable part of the tapered vessel lateral boundary,
while Γin is the inlet. Actually, in this paper we analyze the case R znð Þ-0 as zn-Ln .

Table 1
Typical geometrical and physical values of coronary flow [7].

Quantity Typical value Units

Rn 2�10�1 cm
Ln 10 cm
ε 2�10�2

Vn

c � 10 cm/s
ρn 1 gr/cm3

μn 1.2 cP
pn

ref 80–100 mmHg

Kn 10�8–10�7 cm
θ1�θ0ð Þ π

β 10�2–10�1

2 Kn is dimensionally a length.
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