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a b s t r a c t

A semi-analytic approach is proposed to analyze steady state responses of dynamic systems containing
fractional derivatives. A major purpose is to efficiently combine the harmonic balancing (HB) technique and
Yuan–Agrawal (YA) memory-free principle. As steady solutions being expressed by truncated Fourier
series, a simple yet efficient way is suggested based on the YA principle to explicitly separate the Caputo
fractional derivative as periodic and decaying non-periodic parts. Neglecting the decaying terms and
applying HB procedures result into a set of algebraic equations in the Fourier coefficients. The linear
algebraic equations are solved exactly for linear systems, and the non-linear ones are solved by Newton–
Raphson plus arc-length continuation algorithm for non-linear problems. Both periodic and triple-periodic
solutions obtained by the presented method are in excellent agreement with those by either predictor–
corrector (PC) or YA method. Importantly, the presented method is capable of detecting both stable and
unstable periodic solutions, whereas time-stepping integration techniques such as YA and PC can only
track stable ones. Together with the Floquet theory, therefore, the presented method allows us to address
the bifurcations in detail of the steady responses of fractional Duffing oscillator. Symmetry breakings and
cyclic-fold bifurcations are found and discussed for both periodic and triple-periodic solutions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It has been reported that in many cases fractional derivatives
provide a better model of a system than integer order derivatives
do [1–3]. Recent decades have witnessed the increasing research
interests in fractional dynamic systems in various fields of science
and engineering. Meanwhile, it has become more and more urgent
for researchers to develop effective solution techniques to deal
with systems containing fractional derivatives [4–7].

Basically, there are two categories of solution approaches for
solving fractional dynamic systems. One is based on time-stepping
integration such as predictor–corrector (PC) algorithm [4], and the
other refers to analytic [7] or semi-analytic methods such as fre-
quency domain analysis approaches [8]. As we know, the fractional
derivative exhibits a global feature because it is expressed by a
convolution over the whole solution domain. Direct numerical
simulation is very time-consuming owing to the repeated eva-
luation of the convolution over intervals [0, t] that grow like t. In
addition, it requires storing the history responses because of the
repeated usage in processing the convolution. For these reasons,
long-term simulation has to be realized at the expense of

dramatically increasing computational efforts. Generally, the
computational cost increases in proportional to n2 with n as the
number of integration steps [4]. The cost can be reduced to nlog(n)
by using the short memory principle [9] or some other strategies
[10]. According to the short memory principle, the fractional
derivative is only integrated over a fixed period of recent history
by neglecting the tail of the convolution.

To further release the restriction of huge storage of history
responses and tedious computation of the convolutions, researchers
proposed memory-free approaches such as the numerical scheme
initiated by Yuan and Agrawal (YA method) [11], and that by Ata-
nackovic and Stankovic [12]. The key of the YA method is to
transform the fractional derivative into an improper integral with
time as a parameter, and to approximate the integral in the time-
domain using Gauss–Laguerre integration. By these procedures, a
set of ordinary differential equations will be deduced. Without any
fractional derivatives, the deduced systems can then be directly
solved by some standard time-stepping algorithms, such as the
Newmark method [13] or the trapezoidal rule [14]. Schmidt and
Gual reported that, the YA approach is incapable of approximating
the creep response of the massless Kelvin–Voigt model [14]. For this
issue, Agrawal modified this method to better approximate the
creep response [15]. Based on the YA approach, several improve-
ments were further proposed for its better performance [16,17].
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Steady state responses, if there are any, are of fundamental
significance to the researches in dynamic systems. Very often,
amplitude–frequency curves are obtained by analyzing steady
state responses such as periodic or limit cycle oscillations. Both
linear and non-linear fractional dynamic systems subjected to
harmonic excitations usually exhibit periodic responses [18,19],
and some self-excited systems give rise to limit cycle oscillations
[20]. By time-stepping numerical approaches, steady responses are
usually truncated from long-term simulations when the influence
of initial conditions has faded enough. As mentioned above, long-
term simulation is usually a severe computational obstacle.
Another weakness is time-stepping approaches is incapable of
detecting unstable solutions.

It may be a better choice to implement frequency domain
methods because they can solve steady state responses directly. To
the best of our knowledge, frequency analysis methods have not
been well-developed to investigate steady state responses of
fractional dynamic systems. The reasons probably lie in the facts
that the fractional derivative of a periodic function is usually non-
periodic [21], and it is cumbersome to process the fractional
derivative in the frequency domain [22]. Even though, researchers
have still devoted to developing frequency domain methods for
the purpose of efficiently getting steady solutions of fractional
dynamic systems. For example, Leung et al. [8] and Xiao et al. [23]
applied the residue harmonic balance method to solve the frac-
tional van der Pol type oscillators. Xie and Lin [24] analyzed the
van der Pol oscillator with small fractional damping using the
method of two-scales expansion. Shen et al. [25] implemented the
averaging method to study the primary resonance of Duffing
oscillator with fractional derivative.

The key computational obstacle confronted in frequency
domain analysis lies in calculating the fractional derivative of
periodic function. In many cases, the calculations were manipu-
lated directly but inefficiently since the fractional derivative
functions are not evident [21,22]. In the YA method, the fractional
derivative is transformed from a convolution into a parametric
improper integral. Here, we call this transformation as the YA
memory-free principle for convenience. It will be shown later, this
parametric integral provides us a convenient way to compute the
fractional derivative of periodic function. Motivated by this con-
venience, we combine the YA principle and harmonic balance (HB)
procedure to propose an analytical or semi-analytical approach for
investigating the steady state responses of fractional dynamic
systems. The HB method is to express a periodic solution as
truncated Fourier series, and to determine the Fourier coefficients
by solving a set of algebraic equations deduced by equating the
coefficients of the cosine and sine functions to zeroes for the
considered equations [26].

Both linear and non-linear systems are presented as numerical
examples. The results agree excellently with those obtained by the
PC algorithm [4] and by the YA method [11], respectively. Since the
solutions by the presented method are expressed as truncated
Fourier series, their stabilities can be judged by the Floquet the-
ories. It is shown that, the presented method is capable of solving
both stable and unstable periodic solutions. Due to this merit,
moreover, we find and analyze the bifurcations in detail of both
periodic and triple-periodic solutions. On the other hand, the time
domain solution provided by time-stepping numerical methods is
intuitively considered to be stable [27]. In other words, these
numerical methods are usually incapable of seeking unstable
solutions. It is difficult, therefore, to track the evolutions of peri-
odic responses as a change of the solution stability accompanies
very often with a bifurcation.

The rest of this paper is organized as follows. In Section 2, we
will introduce the YA principle based on which the method is
proposed. We will then solve linear oscillators subjected to a

harmonically excitation. The fractional Duffing oscillator will be
investigated in Section 3 by the HB method plus the arc-length
continuation, namely the IHB method. We discuss the main ana-
lysis results in Section 4. To further extend the presented method,
we solve limit cycle solutions of the fractional van der Pol oscil-
lator in Section 5. This paper will end with some conclusions and
remarks in Section 6.

2. Solution of linear fractional oscillator problem

The YA method was first proposed to solve a single degree-of-
freedom spring-mass-damper system with a fractional damper [11]

mD2xðtÞþcDαxðtÞþkxðtÞ ¼ f sin ðωtÞ ð1Þ
where m, c and k represent the mass, damping coefficient, and
stiffness, respectively; f and ω denote the amplitude and angular
frequency of the external excitation, respectively. The term, DαxðtÞ
ð0oαo1Þ, is the Caputo derivative of order α

DαxðtÞ ¼ 1
Γð1�αÞ

Z t

0

DxðσÞ
ðt�σÞαdσ ð2Þ

where ΓðαÞ ¼ R1
0 e� zzα�1dz represents the Gamma function. Using

the relationship 1=Γð1�αÞ ¼ΓðαÞ sinπα=π, Yuan and Agrawal
deduced DαxðtÞ ¼ μ

R1
0 ϕðy; tÞdy with μ¼ 2 sinπα=π and ϕðy; tÞ ¼

y2α�1
R t
0 e

�ðt� τÞy2DxðτÞdτ. Eq. (1) can be rewritten as

mD2xðtÞþcμ
Z 1

0
φðy; tÞdyþkxðtÞ ¼ f sinωt ð3Þ

By implementing the YA approach introduced in Appendix A,
steady state responses (if there are any) can be obtained by
numerically integrating Eq. (A3) in a duration long enough so that
transient responses are damped out. In this section, we will apply
the harmonic balance (HB) method to directly solve the periodic
responses. Our procedures are based on the equivalence between
system (1) and (3). When the transient responses are damped out
and steady state responses are obtained, we can approximate the
solution as

xðtÞ ¼ γ cos ðωtÞþβ sin ðωtÞ ð4Þ
with the coefficients (γ and β) as unknown constants.

Using the equivalence between the fractional derivative and
the parametric improper integral

DαxðtÞ ¼ μ
Z 1

0
y2α�1

Z t

0
e�ðt� τÞy2DxðτÞdτ

� �
dy ð5Þ

one can calculate

Dα cosωt ¼ μY1 cosωt�μY2 sinωt�μωJ1ðtÞ ð6Þ

Dα sinωt ¼ μY2 cosωtþμY1 sinωt�μω2J2ðtÞ ð7Þ
with Y1 ¼ω2

R1
0

y2α� 1

ω2 þy4 dy¼ωα R1
0

y2α� 1

1þy4 dy, Y2 ¼ω
R1
0

y2αþ 1

ω2 þy4 dy¼
ωα R1

0
y2αþ 1

1þy4 dy, J1ðtÞ ¼
R1
0

y2α� 1e� ty2

ω2 þy4 dy, and J2ðtÞ ¼
R1
0

y2αþ 1e� ty2

ω2 þy4 dy.

Notice that improper integrals, Yi and Ji, are both convergent as
long as ω is a positive constant for 0oαo1. Moreover, the non-
periodic functions, Ji, are uniformly convergent to 0 as t increasing,
as shown in Fig. 1. The calculations of Yi and Ji are shown in
Appendix B. Different from ordinary derivatives, the fractional
derivatives of periodic functions are essentially non-periodic. As
long as t is large enough, they can be approximated as periodic
functions. The time history of D0.5cos(t) shown in Fig. 2 approaches
a periodic curve with t increasing.

Substituting of Eq. (4) into (3), neglecting the decaying terms
J1(t) and J2(t) and setting coefficients corresponding to cosine and
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