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a b s t r a c t

Neglecting the convective terms in the Saint-Venant Equations (SVE) in flood hydrodynamic modelling
can be done without a loss in accuracy of the simulation results. In this case the Local Inertial Equations
(LInE) are obtained. Herein we present two analytical solutions for the Local Inertial Equations. The first
is the classical instantaneous Dam-Break Problem and the second a steady state solution over a bump.
These solutions are compared with two numerical schemes, namely the first order Roe scheme and the
second order MacCormack scheme. Comparison between analytical and numerical results shows that the
numerical schemes and the analytical solution converge to a unique solution. Furthermore, by neglecting
the convective terms the original numerical schemes remain stable without the need for adding entropy
correction, artificial viscosity or special initial conditions, as in the case of the full SVE.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Governing equations

One-dimensional models are applicable when there is a dominant
flow direction or when a more detailed solution is not necessary [1].
The SVE, as presented by Barré de Saint Venant [2], are a well-
accepted mathematical description of the physical phenomenon of a
1D free-surface flow [3] based upon the following assumptions:

� The pressure distribution is hydrostatic (the streamlines have a
small curvature and vertical acceleration can be neglected).

� The channel bottom slope is small ð sin ðθÞ � θ4 cos ðθÞ � 1Þ.
� The flow is one dimensional, assuming uniform velocity across

the cross-section.
� Friction and turbulence are introduced by assuming laws

applicable to steady state flow.
� Water density is constant.

The equations form a system of coupled non-linear hyperbolic
partial differential equations that are described by two dependent
variables [3], commonly h (water depth) and v (velocity) but also A
(cross section area) or z (water level) and q (unit-discharge),
related to two independent variables: x, t (longitudinal direction

and time). The system of equations can be further simplified.
Assuming a rectangular channel with width 1 m, the equations for
the conservative form described by Vázquez-Cendón [4] become
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h is the water depth, q the unit-discharge and g the gravitational
acceleration, S the bed slope and J the friction slope. Some
analytical solutions for simplified cases exist but for practical
application numerical methods are preferred [5].

Simplifications of SVE are often sought in order to reduce the
computational time or increase the model stability. SVE are fre-
quently simplified into the Kinematic Wave Model, Diffusive wave
model and Local Inertial Equations (LInE) Model. Assuming neg-
ligible convective terms, the SVE simplify to the LInE. These terms
may cause numerical oscillations near discontinuities and wet-dry
fronts [6,7]. Eqs. (1) and (2) become
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1.2. SVE analytical solutions

Analytical solutions are sought mainly for their ability to attest
the convergence and correctness of numerical models when a full
analytical solution for the problem does not exit. A brief historical
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review of SVE Dam-Break characteristic based analytical solution
is presented herein.

SVE Dam-Break analytical solutions are among the most sought
solutions. One of the first solutions was presented by Barré de Saint
Venant [2] and Ritter [8] for the Dam-Break problem with a dry front.
This solution is a parabola that describes the depth of water after the
sudden complete breaking of the dam and is based upon the
assumption of a prismatic channel with horizontal bed, infinite length
and no bed friction. The initial conditions are of a predefined depth
upstream of the dam site and no water downstream. The breaking of
the dam is assumed to be total and instantaneous. This situation leads
to a horizontal asymptote making the propagation in the tip very fast.
Dressler [9], by transforming the equations into diffusive wave equa-
tions, or, Whitham [10], by treating the tip as a “boundary layer”,
proposed that the tip of the front wave had a different configuration
other than the asymptote. Ritter [8] solutionwas used and only the tip
was changed. Stoker [11] presented the solution for the Dam-Break for
a non-wet front where a rarefaction wave travels backwards and a
shock wave or bore travels forward. Stoker's solution also incorporated
Ritter [8]'s solution if the depth downstreamwas assumed to be equal
to 0. Hunt [12–14] proposed an approximate solution based on the
kinematic wave for an infinite wet prismatic channel with slope [12],
for a sloped prismatic channel with variable width [14] and for an
infinite sloped prismatic channel by using the method of asymptotic
expansions. Hunt's work mainly focused on the long waves and is only
valid after the wave travelled some distance downstream. More
recently Mangeney et al. [15] derived the solution for the 1D sloped
Dam-Break with friction using the Method of Characteristics. Ancey
et al. [16] presented a solution for steep slopes.

The aim of this work is to: (a) present two analytical solution,
for the Dam-break problem based on LInE by using the Method of
characteristics and a steady state solution and (b) compare the
analytical solutions with two numerical solutions of first and
second order, with and without shock capturing ability. In the
Methodology section, the formulae for the depth and velocity will
be derived and explained along with the wave propagation char-
acteristics for the Dam-Break. Well established numerical schemes
will be applied to the LInE, and compared to the analytical solu-
tions. In the last section conclusions will be drawn about the
propagation, analytical solutions and numerical schemes.

2. Methodology

2.1. Analytical Dam-Break solution

The initial conditions are constant with a single jump dis-
continuity at some point [17] usually x¼ 0 m and described by

hðx;0Þ ¼
hl if xo0
hr if x40

(
ð5Þ

The solution of the Dam-Break for the hyperbolic non-linear
LInE (Eqs. (3) and (4)) is obtained through the Method of Char-
acteristics (MOC) that is derived from the geometric theory of the
quasi-linear differential equations. MOC provides an insight into
the physical behavior and the construction of an analytical solu-
tion [18]. In order to derive the analytical solution of the Dam-
Break for the LInE two major steps are defined: calculation of
(1) the Riemann Invariants and the characteristics and (2) the
depth and velocity for the entire domain.

2.1.1. LInE characteristics and Riemann invariants
The concept of Riemann Invariants and characteristics is of the

utmost importance to understand the propagation of the waves in
a set of hyperbolic equation. Eqs. (6) and (7) are the conservative

form of the homogeneous LInE without the source terms. These
are valid for a rectangular, horizontal, and with constant width
unitary channel.
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To obtain the Riemann Invariants and the characteristics it is
first necessary to linearize the previous set of equations and
transform them into a celerity–velocity formulation [18]. From
Eqs. (6) and (7) by applying the chain rule we obtain:
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Multiplying (8) by cg and (9) by g and introducing (10) and (11)
into (8) and (9), adding and subtracting the equations one obtains

∂
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These equations have the form:
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∂
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R¼ 0 ð14Þ

With R¼ 2c3þ3uc2 or R¼ 2c3�3uc2, since ∂
∂tR¼ 0 along the

curves represented by the equation dx
dt ¼ c or dx

dt ¼ �c one obtains

∂
∂t
ð2c3þ3uc2Þ ¼ 0 ð15Þ

On the positive characteristic curves ðCþ Þ with equation:

dx
dt

¼ c ð16Þ

And

∂
∂t
ð2c3�3uc2Þ ¼ 0 ð17Þ

On the negative characteristic curves ðC� Þ with equation:

dx
dt

¼ �c ð18Þ

On the curves Cþ and C� the values 2c3þ3uc2 and 2c3�3uc2

are the respective Riemann invariants.

2.1.2. Dam-Break
In order to derive the analytical solution for the LInE Dam-

Break – following Stoker [11] – one has to divide the structure of
the generic fully developed Dam-Break ðt ¼ t0Þ into 4 areas (Fig. 1).

� Area 0 is the downstream condition depth¼ h0 and
velocity¼ u0 ¼ 0, limited upstream by the steep front wave,
which travels with a constant speed ξ.

� Area 1 is upstream condition and has the initial conditions
depth¼ h1 and velocity¼ u1 ¼ 0. These areas are also the initial
condition to the Riemann Problem.
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