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a b s t r a c t

In connection with the origin of computational mechanics and consequent progress of incremental
methods, a fundamental problem came up even in solid mechanics – namely how to correctly time-
linearize and time-integrate deformation processes within finite deformations. Contrary to small
deformations (actually infinitesimal), which represent a correction of an initial configuration in terms of
tensor fields and so a description by means of a linear vector space of all symmetric matrices symð3;RÞ is
well-fitting, a situation with finite deformations is rather more complicated. In fact, while the position
and shape of a deformed body take place in the usual three-dimensional Euclidean space R3, a corre-
sponding progress of deformation tensor makes up a trajectory in Symþ ð3;RÞ – a negatively curved
Riemannian symmetric manifold. Since this space is not a linear vector space, we cannot simply employ
tools from the theory of small deformations, but in order to analyze deformation processes correctly, we
have to resort to the corresponding tools from the differential geometry and Lie group theory which are
capable of handling the very geometric nature of this space. The paper first briefly recalls a common
approach to solid mechanics and then its formulation as a simple Lagrangian system with configuration
space Symþ ð3;RÞ. After a detailed exposition of the geometry of the configuration space, we finally sum
up its consequences for the time-incremental analysis, resulting in clear and unambiguous conclusions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Significant progress in the finite deformation theory perma-
nently continues, but particularly in recognizing the space of all
symmetric positive-definite matrices Symþ � Symþ ð3;RÞ as the
configuration space for finite deformations in formulation of solid
mechanics as a simple Lagrangian system, it is only now that the
full picture of the finite deformations is emerging with its clarity.

The paper serves as an extension to papers [14,15], in that it
discusses in detail the geometry of the configuration space for
finite deformations Symþ – a negatively curved Riemannian
(globally) symmetric manifold from its intrinsic geometric point of
view. The key idea that the space of all deformation tensors of a
body does have naturally defined on it a simple geometric struc-
ture – a Riemannian metric that plays a very interesting and
crucial role in the development of the theory, has been so far
overlooked. However, only utilization of this fact results in the
geometrically based approach to solid mechanics via simple
Lagrangian system on the space of symmetric positive-definite
matrices (deformation tensors), which offers new approach to old
problems. This approach is especially appealing, since it enables to
utilize the tools of differential geometry and Lie group theory
for the analysis of finite deformation processes to provide

geometrically justified, unambiguous answers to the time-
linearization [14], as well as to its inverse – the time-discrete
integration [15].

The Riemannian geometry naturally enters solid mechanics via
deformation tensor fields. All four possible deformation tensors,
their time derivatives, as well as their corresponding conjugate
stresses will be introduced in Section 2. This section serves as a
preliminary item with the purpose to provide a concise summary
of all the quantities in continuum mechanics, which will be
introduced as the geometric (i.e. coordinate-independent) objects
within the framework of Riemannian geometry.

Section 3 is the central part of the paper. Its Subections 3.1 and
3.2 are devoted to a detailed exposition, different from that in [14],
of Riemannian geometry of the configuration space Symþ – the
space of deformation tensors. Since finite deformation processes
can be thought of as trajectories in the space of all symmetric
positive-definite matrices Symþ , solid mechanics can be treated as
a simple Lagrangian system with the configuration space Symþ ,
plus the Riemannian metric on it that couples stresses and
deformation rates into the stress power. Identification of Rie-
mannian metric on Symþ in Section 3.3 then makes it possible to
accomplish a geometrically consistent time-linearization of
deformation processes, whereas Lie group transformations in
Section 3.5 and treating Symþ as a homogeneous space in Section
3.6 permit their time-discrete integration.
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In particular, tools of Riemannian differential geometry in
Section 4 enable to construct the stress rate in terms of the cov-
ariant derivative geometrically and so unambiguously – the result
is the Zaremba–Jaumann time derivative. They also make it pos-
sible to reveal the geometric meaning of the logarithmic strain,
allowing its generalization for strained initial configurations. In
Section 5, tools of Lie group theory enable to recognize a well-
known relation of solid mechanics as an evolution equation of Lie-
type for finite deformations and then suggest a geometrically
consistent time-discrete integration of deformation processes,
which corrects established numerical schemes. Mathematical
preliminaries are mainly summarized in Appendix.

We envision that this exposition will be useful to all
researchers in such front-line areas of finite deformations that
draw on differential geometry. In Section 2, we aimed at making
available a handy reference of basic quantities of solid mechanics
introduced geometrically, which may be helpful to readers who
want to learn the field, or various aspects of it. At the same time, in
Section 3–5, we attempted to write this exposition so that it covers
some novel ideas and facts for finite deformations that cannot be
found elsewhere, except in papers meant for specialists in various
other areas.

2. Riemannian geometry of R3– quantities of solid mechanics
as geometric objects

In this section we shall briefly resume geometric construction
of all the quantities of continuum mechanics and identify them
with geometric (i.e. coordinate-independent) objects, see
[19,27,30,31,52,59–61,65] and cf. [46–51]. Since the lack of a
coordinated terminology and notation is a formidable barrier, we
chose to keep to nomenclature adopted in [31], so as not to cloud
the picture with the many complications and much opacity that a
treatment of finite deformations in terms of uncommon termi-
nology and notation would bring.

2.1. Deformation

Deformation of a body is described globally in terms of an
injective differentiable mapping (diffeomorphism) Φ : B� E3-E3,
where E3 stands for the usual three-dimensional Euclidean point
space R3 considered now as a Riemannian manifold. Unlike fluid
mechanics, which is usually described in terms of velocity fields –
time-linearized diffeomorphisms, for solid mechanics there is a
distinguished natural referential system, and so its local descrip-
tion is described in terms of deformation tensors – actually Rie-
mannian metrics based on space-linearized diffeomorphisms.

The mapping Φ : B-S between two manifolds induces the
linearized tangent mapping TΦ between the corresponding tan-
gent spaces TXΦ : TXB-TxS, where x¼ΦðXÞ. Here, B stands for
referential and S¼ΦðBÞ for actual configurations. In solid
mechanics, the tangent mapping is usually denoted as F≔TΦ, and
called “deformation gradient”. To the tangent mapping TΦ, one
can assign its dual ðTXΦÞn : Tn

xS-Tn

XB, and its transposed ðTXΦÞT :

TxS-TXB mappings (see Remark 3). The tangent with its dual
mapping can then be extended to define push-forward Φn and
pull-back Φn operations between corresponding spaces of tensors
of any order. For more see Remark 4 in Appendix.

Locally, deformation is characterized by deformation tensor
fields – most frequently by the field of the right Cauchy-Green
deformation tensors C¼ FTF, but equivalently also by deformation
fields of the left Cauchy-Green b¼ FFT, Piola B¼ F�1F�T, or
Almansi c¼ F�TF�1 tensors. These deformation fields are actually
Riemannian metrics that describe the geometry in the reference

(resp actual) picture, obtained by the pull-back (resp push-for-
ward) of the actual (resp reference) picture.

In fact, let us denote by g a Riemannian metric on E3, whose
value at each point xAE3 determines a scalar product of any two
vectors emanating from this point, and so establishes a geometry
in its vicinity. By G we fix a metric on reference configuration. The
key notion – a Riemannian metric is a smooth symmetric positive-
definite covariant tensor field of second order that determines
local geometry in the vicinity of any point (see Appendix). As for
nomenclature, 2-tensors will be labeled in italic, but their specific
representation as linear mappings in bold. Covariant 2-tensors will
be denoted by ♭, contravariant by ♯, and mixed without superscript
(except for Riemannian metrics g and G, which are covariant by
definition), cf. Remarks 1 and 2.

Now, if we express the transposed deformation gradient as FT

¼G�1Fng by (A.16), then for the mixed right Cauchy-Green defor-
mation tensor field we get

C¼ FTF¼ G�1Fng F¼G�1ΦnðgÞ; ð1Þ
where ΦnðgÞ denotes the pull-back transformation of metric g
from actual to referential configuration, cf. (A.26). Since C♭ ¼GC by
(A.18), we can rewrite (1) into its simpler covariant form
C♭ ¼ΦnðgÞ, that is C♭ ¼ΦnðgÞ provided we abandon specific
representation of Remark 2. We thus conclude that the covariant
RIGHT CAUCHY-GREEN deformation tensor field C♭ ¼ΦnðgÞ is a Rie-
mannian metric on B, and because of

C♭ðU;VÞ � 〈C♭U;V〉TXB � GðCU;V Þ ¼ gðFU; FVÞ � gðu; vÞ ð2Þ
due to (A.20), it describes the local geometry of the deformed body S
from the point of view of an observer attached to the undeformed
body. For more about the scalar product of (2), see (A.8) and (A.10)
in Appendix. Here, vectors before deformation U;VATXB, which
transform into u; vATxS after deformation, are according to (A.23)
interrelated by u¼ΦnðUÞ � FU○Φ�1 and v¼ΦnðVÞ � FV○Φ�1.

Similarly, for the mixed Piola deformation tensor field we have

B¼ F�1F�T ¼ F�1g�1F�nG¼Φnðg�1ÞG; ð3Þ
where again Φnðg�1Þ stands for the pull-back from actual to
referential configuration of metric in dual space of covectors
g�1 � g♯, cf. (A.11) and (A.26). Since B♯ ¼ BG�1 by (A.18), relation
(3) can be rewritten into contravariant form B♯ ¼Φnðg�1Þ, that is
B♯ ¼Φnðg♯Þ. Now, we can express the scalar product of two cov-
ectors in actual configuration in terms of the Piola tensor. Since
covectors before deformation A;DATn

XB transform after deforma-
tion into covectors a; dATn

xS, they are interrelated by a¼ΦnðAÞ ¼
F�nA○Φ�1 and d¼ΦnðDÞ ¼ F�nD○Φ�1, cf. (A.24). Then due to
(A.5)

B♯ðA;DÞ � 〈A;B♯D〉TXB ¼ 〈F�nA;g�1F�nD〉TxS � 〈a;g�1d〉TxS � g♯ða; dÞ:
ð4Þ

The PIOLA deformation field B♯ ¼Φnðg♯Þ thus describes the local
geometry of the deformed body from the viewpoint of an observer
attached to the reference configuration, now in terms of covectors.

We can also proceed reversely and characterize the deforma-
tion by the local geometry of the body B from the viewpoint of an
observer attached to the actual configuration S. In fact, making use
of the push-forward transformation Φn, cf. (A.27), we get the left
Cauchy-Green deformation tensor field b♯ ¼ΦnðG♯Þ

b¼ FFT ¼ FG�1Fng¼ΦnðG�1Þg; ð5Þ
or the Almansi deformation tensor field c♭ ¼ΦnðGÞ

c¼ F�TF�1 ¼ g�1F�nGF�1 ¼ g�1ΦnðGÞ: ð6Þ
Expressions for corresponding scalar products in reference con-
figuration, expressed in actual configuration, are analogous to
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