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a b s t r a c t

In this paper, the probability density evolution of Markov processes is analyzed for a class of barrier
problems specified in terms of certain boundary conditions. The standard case of computing the prob-
ability density of the response is associated with natural boundary conditions, and the first passage
problem is associated with absorbing boundaries. In contrast, herein we consider the more general case
of partially reflecting boundaries and the effect of these boundaries on the probability density of the
response. In fact, both standard cases can be considered special cases of the general problem. We provide
solutions by means of the path integral method for half- and single-degree-of-freedom systems for both
normal and Poissonian white noise. Emphasis is put on the considerations of the yielding barrier which is
expressed in terms of non-reflecting (but not absorbing) boundary conditions. Comparison with Monte
Carlo simulation demonstrates the excellent accuracy of the proposed method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the probability distribution of a random process
in the presence of barriers is crucial in structural engineering. The
barriers encountered are mainly of two different kinds which we
propose to distinguish as follows: ideal and physical. The former is
a barrier that does not modify the equation of motion and it is
useful for reliability analysis. The latter situation occurs when at
least one state variable is constrained between one (or two) walls,
or when the parameters of the system instantaneously change as
some threshold is reached.

The ideal barrier may be absorbing or not. The absorbing barrier
acts in such a way that when a state variable reaches it for the first
time the trajectory is cancelled. This means that the probability
content of the surviving trajectories will decrease monotonically.
This is the so-called first passage problem [1–9]. Finding the PDF of
the first passage time is crucial for safety analysis.

If a state variable touches the barrier and the corresponding tra-
jectory survives, then the barrier is not absorbing. This kind of barrier
is useful for the level-crossings of a random process, which in turn is
expressed by so-called counting processes. In the special case when the
barrier ξ is zero, we have the so-called zero crossing problem.

The physical barrier is the reflecting one. It occurs when the
motion of the system is constrained between one (or two) walls.
As an example, a mass may move freely between �1 and ξ
(where ξ is the barrier level), but as it touches the barrier the mass
is reflected like it happens during an impact [10–13]. If some
quantity of energy is dissipated during the impact (inelastic
impact) then the barrier reflects the mass with a restitution factor
cr with 0rcrr1. The two extremes are cr¼0 (purely inelastic
impact, the mass remains glued to the barrier) and cr¼1 which is
elastic impact. This latter case means that the velocity before and
after the impact simply changes its sign and the kinetic energy is
preserved. The case cr is related to a moving barrier ξðtÞ with the
sign of _ξðtÞ opposite to the sign of _xðtÞ.

Recently, the absorbing barrier problem [14] and the vibroim-
pact problem [15] have been treated by using the Path Integration
(PI) method. The appeal of using such a method for finding the
PDF in the presence of strong non-linearities and impacts lies in
the fact that the discretized version of the Chapman–Kolmogorov
equation (CK), namely the PI, allows us to follow the various tra-
jectories step by step for non-linear systems under normal white
noise processes [16,17] and Poissonian white noise [18,19]. It fol-
lows that it is possible to control the number of time, in the whole
process, that the various trajectories touch or do not touch the
barriers. In the case of the ideal barrier we do not modify the
equation of motion and we simply count the number of times that
the barrier is crossed or we cancel the trajectories crossing the
barrier (absorbing barrier). For physical barriers like the ones in
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vibroimpact problems we modify the equation of motion by
inserting new initial conditions in the step according to the kind of
impact.

In this paper, another kind of barrier is proposed, i.e. the yielding
barrier. This kind of barrier is useful for finding the probability
distribution of elasto-plastic systems. It consists of an impact pro-
blem with restitution coefficient cr¼0 with the difference that the
trajectories remain glued to the barrier until some variable changes
its sign. This is exactly what happens to an elasto-plastic oscillator
in the stress space. In fact, when the stress attains the yield value s0,
the stress S(t) remains frozen at the barrier as long as SðtÞ _SðtÞ
remains non-negative. Otherwise it will move freely in the elastic
zone until another impact occurs. Moreover, for completeness all
the kinds of barrier problems are analysed with the extension to
Poissonwhite noise. For simplicity, the analysis is first presented for
half oscillators, and then extended to single degree of freedom
oscillators. The results from PI are compared to Monte Carlo (MC)
simulation showing in all cases perfect agreement of the PDF
evaluated by PI and that evaluated by MC.

2. Barrier problems

The barrier problems traditionally are of two kinds: absorbing
barrier and reflecting barrier. The former kind is such that if a
realisation of the given process touches for the first time a given
barrier it disappears (see Fig. 1(a)).

The latter is such that the realisation touches the barrier the
trajectory is reflected with the law

_X ðtnÞþ ¼ �cr _X ðtnÞ� ð1Þ
where tn is the generic time instant at which the impact occurs,
the superscripts � and þ stand for the immediately before and
after the impact, respectively, and cr is the restitution coefficient
with 0rcrr1. If cr¼0 the impact is inelastic and for all the
subsequent time instants at which the trajectory touches for the
first time the barrier it remains glued to the barrier (see Fig. 1(b)).

The absorbing barrier problem is useful for the definition of the
so-called reliability function and for the first passage problem [14].
The reflecting barrier is useful to study vibroimpact systems in
mechanical and electrical systems. However, as we assume that
cr ¼ �1 in Eq. (1) we have that the barrier does not reflect at all
and the trajectories touching the barrier will survive. This kind of
barrier is useful for the so-called counting process as usually
employed for the analysis of level-crossings.

Then we propose to distinguish the barriers as ideal and phy-
sical. The former are such that the barrier does not modify neither
the parameters of the system nor its initial conditions before and
after the impact at time tn. In contrast to that, a physical barrier
will modify either the initial conditions for tZðtnÞþ or the para-
meters of the system.

Among the physical barriers, we propose another one that will
be labeled as yielding barrier. It consists of a reflecting barrier with
restitution coefficient cr¼0 with the difference that the trajectory
will remain glued to the barrier until another variable (strictly
related to the previous one) will change its sign. Then it moves
freely inside the barrier unless another impact occurs. This is
exactly the behaviour of an elasto-perfectly plastic spring. Such a
kind of barrier is a physical one and it is useful for the study of
elasto-plastic systems.

A model of such an elasto-plastic system is shown in Fig. 2. It
comprises a linear spring (k) in series with a friction element
capable of transmitting a stress S bounded by �s0rSrs0. This
spring–friction combination is in parallel to a linear dashpot with
viscosity constant c. Its state is uniquely defined by the displace-
ment x and the plastic slip z in the friction element.

The differential equations governing the evolution of the state
variables are

c _XþkðX�ZÞ ¼ FðtÞ ð2Þ
In this equation, S¼ kðX�ZÞ denotes the restoring force (or by
proper normalization with a reference area which, for con-
venience, has been set to unity here) the stress. Due to the lim-
itation on the magnitude of the stress, the rate of the plastic slip is
determined by the relations

_Z ¼
_X S¼ s04 _X40
_X S¼ �s04 _Xo0
0 else

8><
>: ð3Þ

Since _S ¼ kð _X� _Z Þ, we can re-formulate the equation of motion in
terms of the stress variable using

c _X ¼ c _Zþc
k
_S ð4Þ

and using Eq. (2)

c
k
_SþS¼ FðtÞþc _Z ð5Þ

Since for the cases S¼ s04 _X40 as well as S¼ �s04 _Xo0 we
have _S ¼ 0 and for the remaining cases we have _Z ¼ 0, the above
equation upon introducing α¼ c=k reduces to

α _S ¼ 0; j Sj ¼ s04S _SZ0 ð6aÞ

α _SþS¼ FðtÞ; else ð6bÞ
The condition _SZ0 (_Sr0) is equivalent to the condition _XZ0
( _Xr0). It can be seen that the evolution of the stress S(t) can be
formulated independently, i.e. without explicit specification of X and Z.

The relations between the displacement Z, the plastic slip Z and
the stress S can be seen in Fig. 3.

It can be seen that the stress S(t) remains glued to the yield
stress s0 as long as S _S remains non-negative, otherwise an elastic
recovery occurs and S(t) returns below the barrier moving

Fig. 1. Classical barriers.
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