
Accepted Manuscript

Full Length Article

Terahertz surface emission from layered semiconductor WSe₂

Keyu Si, Yuanyuan Huang, Qiyi Zhao, Lipeng Zhu, Longhui Zhang, Zehan Yao, Xinlong Xu

PII:	S0169-4332(18)31065-1
DOI:	https://doi.org/10.1016/j.apsusc.2018.04.117
Reference:	APSUSC 39116
To appear in:	Applied Surface Science
Received Date:	13 January 2018
Revised Date:	31 March 2018
Accepted Date:	10 April 2018

Please cite this article as: K. Si, Y. Huang, Q. Zhao, L. Zhu, L. Zhang, Z. Yao, X. Xu, Terahertz surface emission from layered semiconductor WSe₂, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc. 2018.04.117

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Terahertz surface emission from layered semiconductor WSe₂

Keyu Si¹, Yuanyuan Huang¹, Qiyi Zhao¹, Lipeng Zhu¹, Longhui Zhang¹, Zehan Yao¹,

and Xinlong Xu^{1,*}

¹Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China

ABSTRACT

Ultrafast laser interaction with the layered semiconductors has attracted wide interest due to not only the fundamental physical understanding of the light-matter interaction in these advanced materials, but also the potential optoelectronic devices from visible region to THz region based on these emergent semiconductors. Herein, we investigated the THz radiation property from the layered WSe₂ due to the d-d photo-transition by an ultrafast laser excitation. We observed strong broadband p-polarized THz radiation under different pump polarization and an evident THz radiation saturation with the pump fluence. The THz radiation demonstrated a cosine function with the polarization angle of the pump beam. Angular dependent THz radiation had a polarity reverse with the opposite incident angle and could be fitted well with a dipole approximation model. These results reveal that the dominant mechanism of THz emission is due to the photocarrier surging under the surface field. The azimuthal angle dependence of THz radiation suggested that the dominant contribution is due to the surface depletion field rather than surface field induced optical rectification. In addition, we inferred that the laser damage threshold for the WSe₂ crystal is 3.11 mJ/cm² confirmed by both THz emission spectroscopy and Raman Spectroscopy. Our results could provide the fundamental light-matter interaction data for the layered WSe_2 and promise the potential applications of this Download English Version:

https://daneshyari.com/en/article/7833836

Download Persian Version:

https://daneshyari.com/article/7833836

Daneshyari.com