Accepted Manuscript

Full Length Article

Application of Rhenium-doped Pt₃Ni on carbon nanofibers as counter electrode for dye-sensitized solar cells

Ling Li, Qi Lu, Jing Li, Xiaoyu Liu, Gengyu Shi, Fan Liu, Shuang Liu, Wenge Ding, Xiaohui Zhao, Yucang Zhang

PII: S0169-4332(18)31111-5

DOI: https://doi.org/10.1016/j.apsusc.2018.04.151

Reference: APSUSC 39150

To appear in: Applied Surface Science

Received Date: 22 December 2017

Revised Date: 6 April 2018 Accepted Date: 16 April 2018

Please cite this article as: L. Li, Q. Lu, J. Li, X. Liu, G. Shi, F. Liu, S. Liu, W. Ding, X. Zhao, Y. Zhang, Application of Rhenium-doped Pt₃Ni on carbon nanofibers as counter electrode for dye-sensitized solar cells, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.04.151

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Application of Rhenium-doped Pt₃Ni on carbon nanofibers as counter electrode for dye-sensitized solar cells

Ling Li^{a,b}, Qi Lu^a, Jing Li^a, Xiaoyu Liu^a, Gengyu Shi^a, Fan Liu^a, Shuang Liu^{a,c*}, Wenge Ding^{a*}, Xiaohui Zhao^{a*}, Yucang Zhang^{d*}

^aHebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.

^bState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

^cCollege of Quality Technology Supervision, Hebei University, Baoding, Hebei Province, Chi na

^dKey Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources in Hainan University

Abstract: Rhenium-doped platinum-nickel nanostructures supported on carbon nanofibers (Re-Pt₃Ni/CN) were fabricated, used as counter electrodes (CEs) in dyesensitized solar cells (DSSCs), by a simple electrospinning technique and a hydrothermal method. DSSCs employing Re-Pt₃Ni/CN electrodes showed a higher power conversion efficiency (PCE) of 9.36% compared to solar cells with Pt, CN and Pt₃Ni/CN CEs measured under the same conditions. The excellent photoelectric performance of the Re-Pt₃Ni/CN CE is attributed to its stable octahedral structure and large specific surface area. Accordingly, the Re-Pt₃Ni/CN CE is a promising costeffective alternative CE for DSSCs.

Download English Version:

https://daneshyari.com/en/article/7833874

Download Persian Version:

https://daneshyari.com/article/7833874

Daneshyari.com