Accepted Manuscript

Full Length Article

Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route

Xiaojing Liu, Li Jiang, Xiumei Jiang, Xueying Tian, Ying Huang, Peiyu Hou, Shouwei Zhang, Xijin Xu

PII: S0169-4332(18)30790-6

DOI: https://doi.org/10.1016/j.apsusc.2018.03.116

Reference: APSUSC 38864

To appear in: Applied Surface Science

Received Date: 8 February 2018 Revised Date: 9 March 2018 Accepted Date: 14 March 2018

Please cite this article as: X. Liu, L. Jiang, X. Jiang, X. Tian, Y. Huang, P. Hou, S. Zhang, X. Xu, Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.03.116

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route

Xiaojing Liu*, Li Jiang, Xiumei Jiang, Xueying Tian, Ying Huang, Peiyu Hou, Shouwei Zhang, Xijin Xu*

School of Physics and Technology, University of Jinan, Jinan 250022, Shandong Province, PR
China

* Corresponding author. Tel.: +86-531-8276-5480; fax: +86-531-8276-5480.

E-mail address: lxj@mail.sdu.edu.cn (X.J. Liu), sps_xuxj@ujn.edu.cn (X.J. Xu).

Abstract

This paper demonstrates an ethanol gas sensor based on indium oxide/molybdenum disulfide (In_2O_3/MoS_2) nanocomposite via hydrothermal route. The microstructure and micromorphology of In_2O_3/MoS_2 nanocomposite were fully characterized by various analytical techniques. The gas-sensing properties of the In_2O_3/MoS_2 composite were investigated upon exposure to different concentrations of ethanol gas from 1 ppm to 50 ppm at the optimum temperature, and compared with the pristine In_2O_3 sensors. Owing to the supporting substrate of specific two-dimensional MoS_2 nanosheets, the sensor based on In_2O_3/MoS_2 composite exhibit superior gas sensing performance towards ethanol, which outstripped that of pure In_2O_3 sensor and have potential applications in the detection of ethanol vapors.

Keywords: Gas sensors; Ultra-sensitive ethanol sensing; Hydrothermal method

1. Introduction

Molybdenum disulfide (MoS₂), as a graphene-liked 2D layered semiconductor, is considered to be a promising candidate due to its extremely large surface-to-volume ratio, and exceptional electrical properties. Compared with graphene which band gap is 0, MoS₂ layered structure with band-gap varies from 1.2 eV (bulk MoS₂) for

Download English Version:

https://daneshyari.com/en/article/7833947

Download Persian Version:

https://daneshyari.com/article/7833947

<u>Daneshyari.com</u>