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a b s t r a c t

The Adomian modified decomposition method (AMDM) is employed in this study to investigate the free
vibration and stability of a cantilever double-beam system, which is continuously joined by a Winkler-type
elastic layer. The free end of each beam is restrained by a translational spring and subjected to a combination
of compressive axial and follower loads. Based on the AMDM, the governing differential equations for the
double-beam system are represented as a recursive algebraic equation. By using boundary condition
equations, the natural frequencies and corresponding mode shapes can be easily obtained simultaneously.
The double-beam system becomes unstable in the form of either divergence or flutter with the increasing
loads. Then the critical loads are discussed under different boundary conditions and the nonconservative
parameters. Furthermore, the effect of the value of the spring stiffness on the critical loads for either flutter
or divergence instability of the double-beam systems is studied.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The double-beam systemmade of two parallel beams continuously
joined by a linear Winkler-type elastic layer is widely used in various
engineering fields, such as double-walled carbon nanotubes [1–6], tall
building [7] and aeronautical engineering applications [8–10]. Differ-
ent numerical or analysis methods such as the differential quadrature
method [1,2,11], nonlocal elasticity theory [3,4], Galerkin-type state-
space method [7], spectral element analysis [8] and classical differ-
ential equation method [12] have been used in solving free vibration
problems of such structures. No attempt will be made here to present
a bibliographical account of previous work in the area of the free
vibration analysis of double-beam systems. A few selective recent
papers are quoted [1–4,7,8,11,12] which provide further references on
the subject.

However, a relatively few papers have been published on the
stability analysis for double-beam systems. Zhang et al. [9,10] inves-
tigated the free transverse vibration and buckling (divergence) of a
simply-supported double-beam system under compressive axial load-
ing. And the explicit expressions for the natural frequencies have been
derived, then the analytical solutions of the critical buckling loads are
obtained. The calculation results show that the critical buckling loads
of the double-beam systems depend on the axial force ratio of the two
beams and the stiffness of the Winkler elastic layer. Stojanovic et al.

[13,14] extended the work of Ref. [9] to analyze the forced vibration
and buckling of a Rayleigh and Timoshenko double-beam system
under axial loading. Similar to Refs. [9,10], only the simply supported
boundary condition for double-beam system is considered in Refs.
[13,14]. Kozic et al. [15] discussed the free vibration and buckling of a
double-beam system continuously joined by a Kerr-type three-para-
meter layer under axial loading. The analytical solution for the critical
buckling load of the system is derived based on the classical Bernoulli–
Fourier method. The explicit expressions are presented for natural
frequencies and the associated amplitude ratios of the two beams.
Murmu and Adhikari [5] studied the axial instability problem of
double nanobeam systems using nonlocal elasticity theory. Scale-
effects in the in-phase and the out-of-phase buckling phenomenon
are presented. Murmu et al. [6] further extended the nonlocal
elasticity theory to analyze the buckling of the double nanoplate
system under biaxial compression.

Until now, most of these studies have been done within the scope
of the classical simply-supported boundary condition with negligible
follower loads, it means that only the divergence behavior of the
double-beam systems has been investigated. In this paper, a relatively
new computed approach called AMDM [16–22] is used to analyze the
flutter and divergence instability for a cantilever double-beam system.
It is assumed that the free ends of both beams under consideration is
restrained by translational springs and subjected to the combination of
compressive axial and follower loads. AMDM is a powerful method for
solving linear and nonlinear differential equations. The solution by
using AMDM is considered as a sum of an infinite series, and rapid
convergence to an accurate solution [16,17].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2014.12.019
0020-7403/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ86 791 645 3569.
E-mail address: qibo_mao@yahoo.com (Q. Mao).

International Journal of Mechanical Sciences 93 (2015) 1–7

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2014.12.019
http://dx.doi.org/10.1016/j.ijmecsci.2014.12.019
http://dx.doi.org/10.1016/j.ijmecsci.2014.12.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.12.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.12.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.12.019&domain=pdf
mailto:qibo_mao@yahoo.com
http://dx.doi.org/10.1016/j.ijmecsci.2014.12.019


This paper is organized as follows. First, the governing differential
equations for the double-beam systems are summarized in a matrix
form. By imposing the AMDM, the governing differential equations in
matrix form become recursive algebraic equations. And the boundary
conditions become simple algebraic frequency equations which are
suitable for symbolic computation. Then the natural frequency and
corresponding closed-form series solution of mode shape can be
obtained simultaneously. Finally, some numerical examples are pre-
sented. The influence of the ratio between the axial and follower loads
on natural frequencies of the double-beam systems is discussed.
Particular attention is devoted to the evaluation of the influence of
the boundary conditions on the critical loads level for either flutter or
buckling instability.

2. AMDM for the double-beam systems

Consider the free vibration of two elastically connected parallel
cantilever beams, the free end is restrained by translational springs
and subjected to combination of compressive axial and follower loads,
as shown in Fig. 1. Both beams have the same length L. The total
concentrated load on the nth beam is the sum of axial load (1�αn)Pn
and follower load αnPn (n¼1, 2). The parameter αn is termed as
nonconservative parameter [23]. The stability for qualitatively different
loads can be investigated by varying the parameter αn. For examples,
αn¼0 describes the pure compressive axial load on the nth beam,
while the pure follower load is applied when αn¼1. The values of
0oαno1 describe cases in which both axial (conservative) and
follower compressive loads are applied simultaneously.

The Bernoulli–Euler model for transverse vibration is used in this
study. Notice that the Bernoulli–Euler model assumes that both the
rotary inertia and shear deformation are negligible. The ratios of the
depth to the length of the beams in this study are assumed small. And
the plane sections of the beams are assumed to remain plain and the
curvatures of the beams are assumed to be small.

According to Ref. [9], the partial differential equation describing
the free vibration in each beam, are derived using Euler–Bernoulli
theory and can be expressed as follows:
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∂x4
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where the transverse displacement of the nth beam is denoted as
wn(x, t). En and ρn are Young's modulus and density of the nth beam,
respectively. In is the cross-sectional moment of inertia of the nth
beam, In ¼ ðbnh3n=12Þ, An ¼ bnhn is the cross-section area. bn and hn are
the width and thickness of the nth beam, respectively. ks is the
stiffness of the Winkler-type elastic layer between the beams. Pn is the
total concentrated load which is positive in compression.

According to modal analysis approach (for harmonic free
vibration), the wn(x, t) can be separable in space and time:

wn x; tð Þ ¼Wn

n xð Þ eiωt ð3Þ
where ω and Wn

n xð Þ are the natural frequency and the spatially
dependent structural mode shape of the nth beam, respectively.
i¼

ffiffiffiffiffiffiffiffi
�1

p
.

Substituting Eq. (3) into Eqs. (1) and (2), then separating variable
for time t and space x, and introducing non-dimensional variable
X ¼ ðx=LÞ and Wn Xð Þ ¼ ðWn

n xð Þ=LÞ, the ordinary differential equation
for each beam can be obtained:
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Eqs. (4a) and (4b) can be simplified as a matrix form
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where
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According to the principle of AMDM [16–22], W(X) in Eqs. (4a)
and (4b) can be expressed as in terms of an infinite series of
convergent series
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where the unknown coefficient vector Cm will be determined
recurrently.

Impose a linear operator G¼ ðd4=dX4Þ, then the inverse opera-
tor of G is therefore a 4-fold integral operator defined by the
following equation:
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Z x
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0

Z x

0

Z x

0
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and
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Applying Eqs. (4a) and (4b) with G�1, we get
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Comparison Eqs. (8) and (9), we get
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Substituting Eq. (6) into the right hand of Eq. (10), we get
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Comparing Eq. (11) to Eq. (6), it is observed that the coefficient
vectors Cm in Eq. (11) can be determined by using the following

Fig. 1. Double-beam system under linear combination of compressive axial and
follower loads.
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