Accepted Manuscript

Full Length Article

Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure Bi₂Te₃@SiO₂ nanosheets

Jianwen Chen, Xiucai Wang, Xinmei Yu, Yun Fan, Zhikui Duan, Yewen Jiang, Faquan Yang, Yuexia Zhou

PII: S0169-4332(18)30955-3

DOI: https://doi.org/10.1016/j.apsusc.2018.04.009

Reference: APSUSC 39008

To appear in: Applied Surface Science

Received Date: 7 September 2017 Revised Date: 15 March 2018 Accepted Date: 2 April 2018

Please cite this article as: J. Chen, X. Wang, X. Yu, Y. Fan, Z. Duan, Y. Jiang, F. Yang, Y. Zhou, Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure Bi₂Te₃@SiO₂ nanosheets, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.04.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure $Bi_2Te_3@SiO_2$ nanosheets

Jianwen Chen^a, Xiucai Wang^{a*}, Xinmei Yu^{a*}, Yun Fan^a, Zhikui Duan^a, Yewen Jiang^a, Faquan Yang^a and Yuexia Zhou^a

^aSchool of Electronic and Information Engineering, Foshan University, Foshan, 528000, China

*Corresponding author: Xiucai Wang, E-mail: wxc5168@163.com;

Xinmei Yu, E-mail: labxmyu@163.com;

Abstract

Polymer/semiconductor-insulator nanocomposites can display high dielectric constants with a relatively low dissipation factor under low electric fields, and thus seem to promising for high energy density capacitors. Here, a novel nanocomposite films is developed by loading two-dimensional (2D) core-shell structure Bi₂Te₃@SiO₂ nanosheets in the poly (vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) polymer matrix. The 2D Bi₂Te₃ nanosheets were prepared through simple microwave-assisted method. The experimental results suggesting that the SiO₂ shell layer between the fillers and polymer matrix could effectively improve the dielectric constant, dielectric loss, AC conductivity, and breakdown strength of composites films. The composite films load with 10 vol. 2D Bi₂Te₃@SiO₂ nanosheets exhibits a high dielectric constant of 70.3 at 1kHz and relatively low dielectric loss of 0.058 at 1kHz. The finite element simulation of electric field and electric current density distribution revealed that the SiO₂ shell layer between the fillers and polymer matrix could effectively improve the energy loss, local electric field strength, and breakdown strength of composite films. Therefore, this work will provide a promising route to achieve high-performance capacitors.

Keywords: Nanocomposites; Dielectric properties; Finite element simulation; capacitors

Download English Version:

https://daneshyari.com/en/article/7834239

Download Persian Version:

https://daneshyari.com/article/7834239

Daneshyari.com