Accepted Manuscript

Full Length Article

Growth of single-layer graphene on Ge (100) by chemical vapor deposition

C.D. Mendoza, P.G. Caldas, F.L. Freire Jr., M.E.H. Maia da Costa

PII: S0169-4332(18)30973-5

DOI: https://doi.org/10.1016/j.apsusc.2018.04.019

Reference: APSUSC 39018

To appear in: Applied Surface Science

Received Date: 19 September 2017

Revised Date: 2 April 2018 Accepted Date: 3 April 2018

Please cite this article as: C.D. Mendoza, P.G. Caldas, F.L. Freire Jr., M.E.H. Maia da Costa, Growth of single-layer graphene on Ge (100) by chemical vapor deposition, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.04.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Growth of single-layer graphene on Ge (100) by chemical vapor deposition

C. D. Mendoza^{1*}, P. G. Caldas¹, F.L. Freire Jr.¹, M. E. H. Maia da Costa¹.

¹Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900

Rio de Janeiro, Brazil.

Abstract

The integration of graphene into nanoelectronic devices is dependent on the availability

of direct deposition processes, which can provide uniform, large-area and high-quality

graphene on semiconductor substrates such as Ge or Si. In this work, we synthesised

graphene directly on p-type Ge (100) substrates by chemical vapour deposition. The

influence of the CH₄:H₂ flow ratio on the graphene growth was investigated. Raman

Spectroscopy, Raman mapping, Scanning Electron Microscopy, Atomic Force

Microscopy and Scanning Tunnelling Microscopy/Scanning Tunnelling Spectroscopy

results showed that good quality and homogeneous monolayer graphene over a large

area can be achieved on Ge substrates directly with optimal growth conditions.

Keywords: Graphene, Germanium, Raman Spectroscopy, STM/STS, AFM.

*Corresponding authors. Tel: +55 21 35271272. Fax: +55-21 35271271.

E-mail: cesar.diaz@vdg.fis.puc-rio.br (Cesar Diaz)

1

Download English Version:

https://daneshyari.com/en/article/7834277

Download Persian Version:

https://daneshyari.com/article/7834277

Daneshyari.com