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a b s t r a c t

This paper presents an analytical method to study the non-linear stability and remote unconnected
equilibria of shallow arches with non-symmetric geometric imperfections. The exact solutions of the
equilibria and critical loads are obtained. Unlike many previous studies, these solutions can be applied to
arbitrary shallow arches with arbitrary geometric imperfections. It is found that slightly imperfect arches
have multiple remote unconnected equilibria that cannot be obtained in experiments or using finite
element simulations if a proper perturbation is not performed. The formulas to directly calculate the
critical loads, including those of the remote unconnected equilibria, are also derived. The effect of
asymmetric geometric imperfections on the equilibria and critical loads is revealed by applying the
derived formulas to half-sine arches with different geometric imperfections.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow arches are commonly used structural components in
civil, aerospace and mechanical engineering. When an arch is
subjected to a transverse load, it can display highly non-linear
behavior such as snap-through buckling, where the structure loses
stability and suddenly jumps to a remote coexisting equilibrium
configuration. This process typically involves sudden curvature
and stress reversals, which greatly exacerbate the fatigue damage.

Many of the previous studies on non-linear stability of shallow
arches have focused on symmetric systems (geometry, boundary
and loading conditions). In one of the pioneering studies [1], Fung
and Kaplan utilized Fourier series to derive the non-linear equili-
brium and buckling equations. Exact solutions of the buckling load
were obtained for a sinusoidal arch subjected to a sinusoidal
distributed load since only one mode is involved. This early work
was extended by several researchers to study the influence of
elastic foundations [2,3], to include thermal effects [4], and to
derive exact solutions for the sinusoidal arch subjected to a point
load [5,6]. Another pioneering work was from Schreyer and Masur
[7], where the equilibrium and buckling equations were derived
using energy method and solved analytically. Following this work,
many studies have been conducted by Pi and Bradford [8–11] and
other researchers [12–14], including a variety of cases such as

parabolic and circular shapes, concentrated and distributed loads,
pinned–pinned, fixed–fixed and elastic boundary constraints. In
addition, the non-linear finite element method has also been
widely adopted to investigate the non-linear buckling of shallow
arches [15–20]. Path following methods are typically used to
identify the primary equilibrium path and the limit-point buckling
load. To obtain the bifurcated branches, additional numerical
techniques are commonly required [21,22].

The arches used in engineering applications usually have
certain geometric imperfections, which their buckling and post-
buckling behavior can be very sensitive to [23]. The non-linear
buckling analysis of geometrically imperfect arches is not without
precedence. The early report [1] by Fung and Kaplan also covered a
short discussion on half-sine arches with specific geometric
imperfections. Maximum three sine terms were adopted to derive
the approximate solutions for the case of a concentrated load. The
predicted minimum rise for the perfect sinusoidal arch subjected
to a concentrated load to display bifurcation buckling was pointed
out as inaccurate by a recent article [5]. Examples of analytical,
asymptotic or numerical solutions for the non-linear buckling of
imperfect arches can be found in [24–29]. In all these geometric
imperfection analyses, the buckling load was either calculated
directly with no knowledge of the postbuckling behavior or by just
tracing a single continuous equilibrium branch. Such analyses
preclude the exploration of remote unconnected equilibrium paths
and their critical states. Pi and Bradford [30] recently demon-
strated that it is crucial to identify all equilibrium states including
the remote equilibria to determine the branch that the arch can
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dynamically jump to. Harvey and Virgin [31] experimentally
proved the existence of remote unconnected equilibria for shallow
arches under unsymmetric loads.

In the present paper, the primary objective is to explore the
remote unconnected equilibria and critical loads of shallow arches
with asymmetric geometric imperfections. Exact solutions are
obtained for equilibrium states and critical loads without truncat-
ing the Fourier series. Moreover, these expressions are valid for
arbitrary shallow arches with arbitrary geometric imperfections.
When these formulas are applied to half-sine arches with different
asymmetric geometric imperfections, it is found that many remote
unconnected equilibria with multiple limit and bifurcation points
exist for these slightly imperfect arches. These remote uncon-
nected equilibria and their critical loads cannot typically be
detected in experiments or using the non-linear finite element
method by simply varying the control parameter quasi-statically. It
is only possible to identify them experimentally or numerically by
first performing a perturbation that requires prior knowledge of
these unconnected equilibria. In many circumstances, the critical
loads of the remote equilibria are much larger than those of the
primary equilibrium states for arches with small imperfections.
The effect of different geometric imperfections on all critical loads,
including those of the remote unconnected equilibria, is investi-
gated thoroughly in this work.

2. Governing equations

In this section, the non-linear equilibrium and buckling equa-
tions are derived for pinned–pinned slender shallow arches with
arbitrary initial shapes subjected to arbitrary vertical loads fn

(Fig. 1). Both the geometric and load imperfections can be
analyzed, but only the asymmetric geometric imperfection is
investigated in this paper.

The material is assumed to be elastic, isotropic and homoge-
neous throughout the entire analysis. To model the geometric non-
linearity of slender arches, a large displacement Euler Bernoulli
beam theory is adopted. In Fig. 1, E denotes Young's modulus, A
and I represent the area and the moment of inertia of the cross
section, respectively, and L is the horizontal span of the arch.

2.1. Equilibrium equations

Following [1,5,4], the differential equation, describing the
equilibrium states of the shallow arch, can be written as

EIðy�y0Þ;xxxx�Pny;xx ¼ f n ð1Þ

where y0 and y are the initial and deformed shapes of the arch,
respectively, the subscript “,x” indicates differentiation with
respect to the horizontal position, fn represents the applied vertical
load, and Pn denotes the axial force that can be calculated from the
average axial strain over the span:

Pn ¼ EA
2L

Z L

0
ðy2;x�y20;xÞ dx ð2Þ

If fn is a distributed load, it can be written as a load density qn

whose physical dimension is force over length. If fn is a point load
at location x0, it can then be replaced with Qnδnðx�x0Þ, where Qn is
the dimensional load whose dimension is force and δn is the
dimensional Dirac delta function whose dimension is one over
length.

Utilizing ðu;u0Þ ¼ ð1=rÞðy; y0Þ, ξ¼ ðπ=LÞx, p¼ PnL2=π2EI and
δðξÞ ¼ ðπ=LÞδnðxÞ, Eqs. (1) and (2) can be non-dimensionalized into
the following forms:

ðu�u0Þ;ξξξξ�pu;ξξ�q¼ 0 ð3Þ

p¼ 1
2π

Z π

0
ðu2

;ξ�u2
0;ξÞ dξ ð4Þ

where r¼
ffiffiffiffiffiffiffi
I=A

p
is the radius of gyration of the cross section; δðξÞ

is a non-dimensional Dirac delta function; q¼ qnL4=π4EIr for the
distributed load and q¼ QnL3=π3EIr for the concentrated load.

Adopting the Fourier sine series that satisfies pin-ended
boundary conditions, the initial and deformed configurations,
and the non-dimensional external load can be expressed as

u0ðξÞ ¼
X1
n ¼ 1

βn sin nξ ð5Þ

uðξÞ ¼
X1
n ¼ 1

αn sin nξ ð6Þ

q¼
X1
n ¼ 1

qn sinnξ ð7Þ

where

qn ¼
2
π

Z π

0
q sinnξ dξ; n¼ 1;2;… ð8Þ

Substituting Eqs. (5)–(8) into Eqs. (3) and (4), and equating the
coefficients of sin ðnξÞ from both sides, the following system of
equilibrium equations is obtained:

ðαn�βnÞn4þpn2αn�qn ¼ 0; n¼ 1;2;… ð9Þ
where

p¼
X1
k ¼ 1

ðα2
k�β2

k Þk2
4

ð10Þ

2.2. Buckling equations

When the shallow arch loses stability, the tangent stiffness of
the system becomes singular. The components of the tangent
stiffness matrix of the system can be derived from Eq. (9) as
follows:

Knm ¼ ∂Rn

∂αm
¼ n2m2

2
αnαmþn2ðn2þpÞδnm; n;m¼ 1;2;… ð11Þ

where Rn is the residual (left hand side of Eq. (9)), δnm is the
Kronecker delta, and p is the dimensionless axial force defined in
Eq. (10). When the tangent stiffness matrix is singular, its deter-
minant equals zero. Therefore, the buckling equation can be
derived as

det K¼ ∏
1

k ¼ 1
γkþ

X1
n ¼ 1

α2
n ∏

1

k ¼ 1
ka n

γk

0
@

1
A¼ 0 ð12Þ

where γk ¼ 2ðk2þpÞ=k2 ðk¼ 1;2;…Þ. Since buckling states also
need to satisfy the equilibrium condition, Eq. (12) together with
(9) and (10) provide the critical loads.
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Fig. 1. The shallow arch with an arbitrary initial shape and subjected to an
arbitrary transverse load.

Y. Zhou et al. / International Journal of Non-Linear Mechanics 77 (2015) 1–112



Download English Version:

https://daneshyari.com/en/article/783431

Download Persian Version:

https://daneshyari.com/article/783431

Daneshyari.com

https://daneshyari.com/en/article/783431
https://daneshyari.com/article/783431
https://daneshyari.com

