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a b s t r a c t

In this paper we investigate traveling wave solutions of a non-linear differential equation describing the
behaviour of one-dimensional viscoelastic medium with implicit constitutive relations. We focus on a
subclass of such models known as the strain-limiting models introduced by Rajagopal. To describe the
response of viscoelastic solids we assume a non-linear relationship among the linearized strain, the
strain rate and the Cauchy stress. We then concentrate on traveling wave solutions that correspond to
the heteroclinic connections between the two constant states. We establish conditions for the existence
of such solutions, and find those solutions, explicitly, implicitly or numerically, for various forms of the
non-linear constitutive relation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The present paper is concerned with the dynamics of a
viscoelastic medium investigating the traveling wave solutions of
the equation

TxxþνTxxt ¼ gðTÞtt ; ð1:1Þ
where Tðx; tÞ is the Cauchy stress at point x and time t, gð�Þ is a non-
linear function and ν40 is a constant. Eq. (1.1) is a one-
dimensional non-linear differential equation in T resulting from
the equation of motion and a constitutive equation relating the
stress, the linearized strain and the strain rate.

As opposed to the classical models in mechanics, the strain can
be written as a function of the stress, rather than expressing the
stress in terms of the kinematical variables. This idea is due to
Rajagopal [11,12], who introduced a generalization of the theory of
elastic materials by suggesting implicit models allowing for
approximations where the linearized strain is a non-linear func-
tion of the stress. A series of papers on such implicit theories have
been published recently (see e.g. [1,4,5,15,16]). The advantage of
this new idea is that it allows for the gradient of the displacement
to stay small so that one could treat the linearized strain, even for
arbitrary large values of the stress. In this work we focus on four
different such models, and we reconsider them in the context of
viscoelasticity. We also look at models with quadratically and
cubically non-linear constitutive relations although they do not
behave as expected for large values of the stress.

There are numerous models introduced by Rajagopal in [11]
with implicit constitutive relations between the stress and the
strain including models for elastic fluids, inelastic materials and
non-hyperelastic materials. Following these models, various forms
of non-linear constitutive relations have been studied in different
contexts. For example, Kannan et al. [9] worked on the elastic case
with a polynomial type non-linearity (see Section 2 for more
details). Bulíček et al. [1], on the other hand, considered the static
case with a more general non-linearity (see Section 2) and
presented the first existence result in a three-dimensional domain.

For viscoelasticity, much less is done in the literature. As
explained by Muliana et al. in [10], force, and hence the stress, is
the cause for deformation, hence for the strain. Because of this the
strain should be described in terms of the stress or its history than
vice versa. The motivation for this idea is that in the classical
elasticity theory, there cannot be a non-linear relationship
between the linearized strain and the stress, which, in fact, is
observed in some experiments (see e.g. [19,15]). The fracture of
brittle elastic bodies is another possible application area for such
implicit theories, where one can obtain bounded strain at the
crack tip due to the possibility of having a non-linear relationship
between the linearized strain and the stress (see [18] for details).
Muliana et al. [10] developed a quasi-linear viscoelastic model
where the strain is expressed as an integral of a non-linear
measure of the stress. Rajagopal and Srinivasa in [17] proposed a
Gibbs-potential-based formulation for the response of viscoelastic
materials in this new class. Also Rajagopal and Saccomandi [16]
investigated viscoelastic response of solids, a one-dimensional
version of which is the one we study in this work, namely

γBþνD¼ β0Iþβ1Tþβ2T
2; ð1:2Þ
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where γ and ν are non-negative constants, βi ¼ βiðI1; I2; I3Þ; ði¼ 0;1;2Þ,
I1 ¼ tr T; I2 ¼ 1

2tr T
2; I3 ¼ 1

3tr T
3, B is the left Cauchy–Green stretch

tensor and D is the symmetric part of the gradient of the velocity field.
As they explain, this model includes as special subcases; models for a
very general new class of elastic and viscoelastic bodies (e.g. Titanium
and Gum metal alloys), as well as the Navier–Stokes fluid model (see e.
g. [12]). Linearizing the strain in this model reduces (1.2) to

ϵþνϵt ¼ β0Iþβ1Tþβ2T
2; ð1:3Þ

where ϵ¼ 1
2 ∇uþ∇uT
� �

is the linearized strain and u x; tð Þ is the
displacement.

We study (1.3) in one space dimension with a general non-
linear right-hand side (see (2.2)). We are interested in analyzing
the conditions on the non-linearity g(T) when traveling wave
solutions of the form TðξÞ with ξ¼ x�ct, where c represents the
wave propagation speed, exist for two constant equilibrium states
at infinity. We find the solutions analytically (implicitly or expli-
citly) or numerically. More precisely, we will first look at the
quadratic and the cubic cases for which we are able to solve the
problem analytically and obtain explicit or implicit solutions. After
that we will study four non-linear models, namely Models A–D
(see Section 2), and we will either express the solution implicitly,
or obtain it numerically if it is not possible to find an analytical
solution. Our work seems to be the first such treatment in the
literature of strain-limiting viscoelasticity.

The propagation of traveling waves in non-linear viscoelastic
solids has also been studied previously in the context of classical
theory of viscoelasticity (see e.g. [6–8], and references therein).
The results of present work exhibit some similarities with those in
the literature. The first common point is that the equations of
motion admit kink-type traveling wave solutions. Also, in both
cases, the effective width of the traveling wave is proportional to
the viscosity parameter and the wave profile becomes smoother as
the viscosity parameter increases. However, our study differs from
the articles within the context of classical viscoelasticity theory in
the sense that the governing equation in our model (see (1.1)) is
in terms of the stress and also the non-linearity is on the
inertia term.

The structure of the paper is as follows. In Section 2 we
introduce the one-dimensional strain-limiting viscoelasticity
model as well as give a list of four non-linear constitutive relations
that has been suggested for elastic solids. In Section 3 we consider
traveling wave solutions of the governing equations. In Section 4
we solve the resulting differential equation for different non-linear
constitutive relations, and give analytical solutions where possible,
or obtain numerical solutions.

2. One-dimensional strain-limiting viscoelasticity

Consider a one-dimensional, homogeneous, viscoelastic, infi-
nite medium exhibiting small strains for large stresses. In the
absence of external body forces, the equation of motion is given by

ρ0utt ¼ Tx; ð2:1Þ
where ρ0 is the mass density of the medium, the scalar-valued
function uðx; tÞ is the displacement, and Tðx; tÞ is the Cauchy stress.
Here and throughout this work the subscripts denote partial
derivatives. In contrast to explicit constitutive relations of the
classical theories of viscoelasticity, we shall employ an implicit
constitutive relation

ϵþνϵt ¼ gðTÞ; ð2:2Þ
which gives the linearized strain ϵ¼ ux and the strain rate ϵt as a
non-linear function of the stress T, with gð0Þ ¼ 0 and a non-
negative constant ν. The model defined by (2.2) is the one

dimensional form of (1.3). When ν¼ 0, it reduces to the one-
dimensional version of the model introduced by Rajagopal in
[11,12] for elastic solids.

For convenience, we now define the dimensionless quantities

x ¼ x
L
; t ¼ t

L

ffiffiffi
μ
ρ

r
; T ¼ T

μ
; u ¼ u

L
; ν ¼ ν

L

ffiffiffi
μ
ρ

r
; ð2:3Þ

where L is a characteristic length and μ is a constant with the
dimension of stress. Differentiating both sides of (2.1) with respect
to x, substituting (2.2) into the resulting equation and using (2.3),
we obtain (1.1), where we drop the overbar for notational
convenience. The question that we shall discuss throughout the
rest of this work is which of the possible forms of the non-linear
function g(T) are relevant for the existence of traveling wave
solutions of (1.1). Following mainly the standard techniques used
widely in the literature to find traveling wave solutions we obtain
the solutions of (1.1), explicitly, implicitly or numerically, for
various forms of g(T).

We now discuss some strain-limiting models reported in the
literature for elastic and viscoelastic solids. The following is a list of
non-linear constitutive relations g(T) which we adopt in
this study:

Model A: We first consider the one-dimensional version of the
model proposed in an elastic setting by Kannan et al. in [9],
namely,

gðTÞ ¼ βTþα 1þγ
2
T2

� �n
T ; ð2:4Þ

where αZ0, βr0, γZ0 and n are constants. Note that when n¼0
and/or γ ¼ 0, one recovers the standard constitutive equation for a
linearized material. In Section 4, for the strain-limiting viscoelastic
model defined by (2.2)–(2.4) we obtain traveling wave solutions
explicitly if n¼1 and implicitly if n¼ �1=2.

Model B: The second model is based on a simplified version of
the non-linear constitutive relation proposed by Rajagopal in [14]:

gðTÞ ¼ T

ð1þjT j rÞ1=r
; ð2:5Þ

where r40 is a constant. This model was studied in elastic
settings by many authors in different contexts (see e.g. [1–3]).
Note that when β¼ 0, n¼ �1=2, α¼ 1 and γ ¼ 2, Model A
becomes equivalent to Model B with r¼2. In Section 4, when
r¼2, traveling wave solutions corresponding to this model are
obtained in closed form.

Model C: This model is the one-dimensional form of the
constitutive relation proposed by Rajagopal in [13,14]:

gðTÞ ¼ α 1�exp � βT
1þδjT j

� �	 

þ γT
1þjT j

� �
; ð2:6Þ

where α, β, γ and δ are constants. Note that when β¼ 0 and
α¼ γ ¼ 1 this model reduces to Model B with r¼1. In Section 4, we
solve the non-linear differential equation corresponding to this
model numerically and compute traveling wave solutions for a
specific set of parameter values.

Model D: This model is the one-dimensional form of a different
model again introduced by Rajagopal in [13,14]:

gðTÞ ¼ α 1� 1

1þ T
1þδjT j

0
BB@

1
CCAþβ 1þ 1

1þγT2

 !n

T ; ð2:7Þ

where α, β, γ and δ are constants. Note that when α¼ 0, with
appropriate choice of the remaining parameters, we may derive
Model A from this model. In Section 4, traveling wave solutions
corresponding to this model are also obtained numerically for a
specific set of parameter values.
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