Accepted Manuscript

Full Length Article

Easy one pot synthesis of NiO/Nitrogen doped carbon spheres for highly sensitive enzyme free amperometric glucose sensors

Jiajie Zhu, Haoyong Yin, Jianying Gong, M.S.H. Al-Furjan, Qiulin Nie

PII: S0169-4332(18)30586-5

DOI: https://doi.org/10.1016/j.apsusc.2018.02.233

Reference: APSUSC 38691

To appear in: Applied Surface Science

Received Date: 30 September 2017 Revised Date: 21 February 2018 Accepted Date: 22 February 2018

Please cite this article as: J. Zhu, H. Yin, J. Gong, M.S.H. Al-Furjan, Q. Nie, Easy one pot synthesis of NiO/Nitrogen doped carbon spheres for highly sensitive enzyme free amperometric glucose sensors, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.02.233

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Easy one pot synthesis of NiO/Nitrogen doped carbon spheres for highly sensitive

enzyme free amperometric glucose sensors

Jiajie Zhu^a, Haoyong Yin^{a*}, Jianying Gong^a, M.S.H. Al-Furjan^{b,c}, Qiulin Nie^a*

a College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou,

310018, P. R. China

b Department of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R.

China.

c The State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R.

China

Abstract

The NiO/Nitrogen doped carbon sphere (NiO/NCS) composites were successfully achieved via an

easy one pot synthetic method with urea acting as both nitrogen source and Ni precipitator. The

electrocatalytic performances of the obtained NiO/NCS modified glass carbon electrodes showed

superior activity for direct electrocatalytic oxidation of glucose than that of nitrogen free

NiO/carbon sphere (NiO/CS), which might be due to the synergistic effect of the properties of

NCS and NiO nanoparticles. The introduce of nitrogen can improve the conductivity of the

NiO/NCS and accordingly accelerate the electron transport within the composites, which was very

beneficial to improve the sensitivity to glucose detection for NiO/NCS modified electrodes. The

NiO/NCS electrodes exhibited two corresponding linear regions of 1-800µM and 4-9 mM with the

sensitivity of 398.57µA mM⁻¹cm⁻² and 17.81µA mM⁻¹cm⁻², and the detection limit of 0.25µM and

0.05mM respectively. Moreover, the NiO/NCS composites have also exhibited good selectivity by

adding certain amount of urea, NaCl, L-proline, L-valine, L-Leucine and ascorbic acid into the

0.1M NaOH solution, respectively. The high sensitivity, wide glucose detection range and good

selectivity of the electrodes may ensure its potential applications in the clinical diagnosis of

diabetes.

Keywords: NiO nanoparticles; nitrogen doped carbon sphere; non-enzymatic; glucose sensor

Download English Version:

https://daneshyari.com/en/article/7834370

Download Persian Version:

https://daneshyari.com/article/7834370

<u>Daneshyari.com</u>