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a b s t r a c t

The 14 moments model for dense gases, introduced in the last years by Arima, Taniguchi Ruggeri,
Sugiyama, is here considered. They have found the closure of the balance equations up to second order
with respect to equilibrium; here the closure is found up to whatever order with respect to equilibrium,
but for a more constrained system where more symmetry conditions are imposed and this in agreement
with the suggestion of the kinetic theory. The results, when restricted at second order with respect to
equilibrium, are the same of the previously cited model but under the further restriction of full
symmetries.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Starting point of this research is the paper [1] which belongs to
the framework of Extended Thermodynamics. Some of the original
papers on this subject are [2,3] while more recent papers are [4–
15] and the theory has the advantage to furnish hyperbolic field
equations, with finite speeds of propagation of shock waves and
very interesting analytical properties.

It starts from a given set of balance equations where some
arbitrary functions appear; restrictions on these arbitrariness are
obtained by imposing the Entropy Principle and the relativity
principle.

However, these restrictions were very strong; for example, the
internal energy ϵwas not independent of the pressure p but linked
to it by the relation 2ρϵ¼ 3p, where ρ is the mass density.

This drawback has been overcome in [1] and other articles such
as [16–32] by considering two blocks of balance equations; for
example, in the 14 moments case treated in [1], they are

∂tFMþ∂kF
kM ¼ PM ; ∂tGEþ∂kG

kE ¼ QE ; ð1Þ
where

FM ¼ ðF; Fi; FijÞ; GE ¼ ðG;GiÞ;
FkM ¼ ðFk; Fki; FkijÞ; GkE ¼ ðGk;GkiÞ;
PM ¼ ð0;0; PijÞ; QE ¼ ð0;QiÞ:

The first 2 components of PM are zero because the first 2 compo-
nents of equations (1)1 are the conservation laws of mass and

momentum; the first component of QE is zero because the first
component of equations (1)2 is the conservation laws of energy.
The whole block (1)2 can be considered an ”Energy Block” and we
have used the indexes M and E to distinguish quantities belonging
to the ”Mass Block” from quantities belonging to the ”Energy
Block”.

Eqs. (1) can be written in a more compact form as

∂tFAþ∂kF
kA ¼ PA; ð2Þ

where

FA ¼ ðFM ;GEÞ; FkA ¼ ðFkM ;GkEÞ; PA ¼ ðPM ;QEÞ:

In the whole set (2), FA are the independent variables, while Fkij,
Gki, Pij, Qi are constitutive functions. Restrictions on their general-
ities are obtained by imposing

1. The Entropy Principle which guarantees the existence of an
entropy density h and an entropy flux hk such that the equation

∂thþ∂kh
k ¼ σZ0; ð3Þ

holds whatever solution of the Eqs. (2).
Thanks to Liu' s Theorem [33,34], this is equivalent to assuming
the existence of Lagrange Multipliers μA such that

dh¼ μAdF
A; dhk ¼ μAdF

kA; σ ¼ μAP
A: ð4Þ

An idea conceived by Ruggeri in [35] is to define the 4-
potentials h0, h0k as

h0 ¼ μAF
A�h; h0k ¼ μAF

kA�hk; ð5Þ
so that Eqs. (4)1,2 become

dh0 ¼ FAdμA; dh0k ¼ FkAdμA;
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which are equivalent to

FA ¼ ∂h0

∂μA
; FkA ¼ ∂h0k

∂μA
; ð6Þ

if the Lagrange Multipliers are taken as independent variables.
A nice consequence of Eqs. (6) is that the field equations
assume the symmetric form.
Other restrictions are given by

2. The symmetry conditions, that is the second component of FM is
equal to the first component of FkM, the third component of FM

is equal to the second component of FkM, the second compo-
nent of GE is equal to the first component of GkE. Moreover, Fij,
Fkij and Gki are symmetric tensors. The symmetry of Fkij and Gki

is motivated by the kinetic counterpart of this theory (see Ref.
[23]), even if was not imposed in [1] in order to have a more
general model. We propose, in a future article, to remove this
further constraint. Thanks to Eqs. (6) these conditions may be
expressed as

∂h0

∂μi
¼ ∂h0i

∂μ
;

∂h0

∂μij
¼ ∂h0i

∂μj
;

∂h0

∂λi
¼ ∂h0i

∂λ
;

∂h0½k

∂μi�j
¼ 0;

∂h0½k

∂λi�
¼ 0; ð7Þ

where we have assumed the decomposition μA ¼ ðμ;μi;μij; λ; λiÞ
for the Lagrange Multipliers. Moreover μij is a symmetric
tensor. The next conditions come from

3. The Galilean relativity principle: There are two ways to impose
this principle. One of these is to decompose the variables FA,
FkA, PA, μA in their corresponding non-convective parts F̂

A
, F̂

kA
,

P̂
A
, μ̂A and in velocity dependent parts, where the velocity is

defined by vi ¼ F �1Fi. After that, all the conditions are
expressed in terms of the non-convective parts of the variables.
This procedure is described in [2,34] for the case considering
only the block (1)1 and is followed in [1] for the whole set (1).

Another way to impose this principle leads to easier calcula-
tions; it is described in [36] for the case considering only the block
(1)1 and in [32] for the 18 moments model formulated in the
framework of the theory with both blocks. The resulting Eqs. (13)
and (14) of [32] contain two additional variables with respect to
the present model, that is μill and λll; by putting these variables
equal to zero, we obtain the counterpart for our model, that is

∂h0

∂μ
μiþ

∂h0

∂μh
ð2μihþ2λδhiÞþ2

∂h0

∂μhi
λhþ

∂h0

∂λ
λi ¼ 0;

∂h0k

∂μ
μiþ

∂h0k

∂μh
ð2μihþ2λδhiÞþ2

∂h0k

∂μhi
λhþ

∂h0k

∂λ
λiþh0δki ¼ 0: ð8Þ

To be more precise, the Galilean invariance conditions, as shown in
Ref. [37], dictate a precise velocity dependence of all the moments,
of the entropy density and of the entropy flux density; from them
it follows the dependence on velocity of the Lagrange multipliers
and of the 4-potential. In particular, the independence of h0 and
h0k�h0vk on velocity is expressed by Eqs. (8). To obtain them we
have used the dependence on velocity reported in [1]. Now, the
methodology exposed in [36] consists in imposing firstly only the
equations (8) for the Galilean Relativity Principle supported by the
Entropy Principle; the dependence on velocity is imposed in a
second step, when we come back from the Lagrange multipliers as
variables to the non-convective parts of the moments. At this stage
all the difficult calculations which we have apparently avoided,
now present themselves again as it can be seen also in the present
article for the passages of Sections 3 and 4. But they impose no
further conditions because they amount only in an inversion of
variables and in the solving problem of implicit functions; so these
calculations are very difficult, but straightforward.

So we have to find the most general functions satisfying (7) and
(8). After that, we have to use Eqs. (6)1 to obtain the Lagrange

Multipliers in terms of the variables FA. By substituting them in
(6)2 and in h0 ¼ h0ðμAÞ, h0k ¼ h0kðμAÞ we obtain the constitutive
functions in terms of the variables FA. If we want the non-
convective parts of our expressions, it suffices to calculate the left
hand side of Eqs. (6)1 in v!¼ 0

!
so that they become

F̂
A ¼ ∂h0

∂μA
: ð9Þ

From this equation we obtain the Lagrange Multipliers in terms of

F̂
A
(Obviously, they will be μ̂A) and after that substitute them in

h0 ¼ h0ðμAÞ, h0k ¼ h0kðμAÞ (the last of which will in effect be ĥ
0k
) and

into F̂
kA ¼ ∂h0k

∂μA
, that is Eq. (6)2 calculated in v!¼ 0

!
.

It has to be noted that from vi ¼ F �1Fi it follows F̂
i ¼ 0, so that

one of the equations (9) is 0¼ ∂h0
∂μi
; this does not mean that h0 does

not depend on μi, but this is simply an implicit function defining
jointly with the other equations (9) the quantities μ̂A in terms of
F̂
A
. We note also here the ground to settle μi ¼ 0 at equilibrium: in

fact, in this state we have μij ¼ 0, λi ¼ 0 so that, for the Representa-
tion Theorems, ∂h0

∂μi
is proportional to μi and ∂h0

∂μi
¼ 0 implies μi ¼ 0.

By using a procedure similar to that of the paper [36], we can
prove that we obtain the same results of the firstly described
approach.

Now, from (7)2 it follows ∂h0½i
∂μj�

¼ 0; this equation, together with
(7)1 are equivalent to assuming the existence of a scalar function H
such that the following equation holds:

h0 ¼ ∂H
∂μ

; h0i ¼ ∂H
∂μi

: ð10Þ

In fact, the integrability conditions for (10) are exactly (7)1 and
∂h0½i
∂μj�

¼ 0.
Thanks to (10), we can rewrite (7) and (8) as

∂2H
∂μ∂μij

¼ ∂2H
∂μi∂μj

;
∂2H
∂μ∂λi

¼ ∂2H
∂λ∂μi

;
∂2H

∂μ½k∂μi�j
¼ 0;

∂2H
∂μ½k∂λi�

¼ 0: ð11Þ

∂2H
∂μ2μiþ

∂2H
∂μ∂μh

ð2μihþ2λδhiÞþ2
∂2H

∂μ∂μhi
λhþ

∂2H
∂μ∂λ

λi ¼ 0;

∂2H
∂μ∂μk

μiþ
∂2H

∂μh∂μk
ð2μihþ2λδhiÞþ2

∂2H
∂μk∂μhi

λhþ
∂2H
∂μk∂λ

λiþ
∂H
∂μ
δki ¼ 0:

ð12Þ
We note now that the derivative of (12)1 with respect to μk is equal
to the derivative of (12)2 with respect to μ; similarly, the derivative
of (12)1 with respect to λk is equal to the derivative of (12)2 with
respect to λ, as it can be seen by using also Eqs. (11).

Consequently, the left hand side of Eq. (12)1 is a vectorial
function depending only on two scalars μ, λ and on a symmetric
tensor μij. For the Representation Theorems [38–41], it can be
only zero.

In other words, Eq. (12)1 is a consequence of (11) and (12)2, so
that it has not to be imposed. By using Eqs. (11) we can rewrite Eq.
(12)2 as

∂2H
∂μ∂μk

μiþ2
∂2H

∂μ∂μkj
μjiþ2

∂2H
∂μ∂μki

λþ2
∂2H

∂μk∂μij
λjþ

∂2H
∂μ∂λk

λiþ
∂H
∂μ
δki ¼ 0:

ð13Þ
In Section 2 of the present paper, we find the general solution up
to whatever order with respect to equilibrium, of the conditions
(11) and (13). This is not a trivial aspect; in fact, if we impose the
conditions up to a given order n with respect to equilibrium, there
is always the risk to obtain restrictions on the same expressions by
imposing the equations at an higher order! With the present study
this risk is eliminated.

In Section 3 we will see the implications of this solution to a
second order theory, coming back to the moments as independent
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