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a b s t r a c t

Mechanical responses of materials undergoing large elastic deformations can exhibit a loss of stability in
several ways. Such a situation can occur when a thin-walled cylinder is inflated by an internal pressure.
The loss of stability is manifested by a non-monotonic relationship between the inflating pressure and
internal volume of the tube. This is often called limit point instability. The results, known from the
literature, show that isotropic hyperelastic materials with limiting chain extensibility property always
exhibit a stable response if the extensibility parameter of the Gent model satisfies Jmo18.2. Our study
investigates the same phenomenon but for tubes with anisotropic form of the Gent model (finite
extensibility of fibers). Anisotropy, used in our study, increases the number of material parameters the
consequence of which is to increase degree of freedom of the problem. It will be shown that, in stark
contrast to isotropic material, the unstable response is predicted not only for large values of Jm but also
for JmE1 and smaller, and that the existence of limit point instability significantly depends on the
orientation of preferred directions and on the ratio of linear parameters in the strain energy density
function (this ratio can be interpreted as the ratio of weights by which fibers and matrix contribute to
the strain energy density). Especially tubes reinforced with fibers oriented closely to the longitudinal
direction are susceptible to a loss of monotony during pressurization.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Materials undergoing large elastic deformations exhibit many
non-self-evident phenomena in their mechanical behavior. Some
of them are linked to a loss of stability during deformation. A non-
monotonic inflation of cylinders and spheres, kink formation on a
twisted rod, or wrinkling of the surface of the bent block may be
mentioned as examples [15,16,18,40,12]. In the past, the onset of
instability and related deformation modes have been frequently
discussed with reference to rubber-like materials which, due to
their non-linear mechanical behavior and wide industrial use,
significantly stimulated development of the modern theory of
elasticity. Increasing knowledge of the mechanics of soft tissues
(arteries, veins, muscles, skin, tendons, ligaments, and esophagus),
which inherently undergo large deformations and exhibit material
non-linearity, has also significantly contributed to the progress in
non-linear elasticity.

In biomechanics, a loss of deformation stability has been
hypothesized to be a possible explanation for non-physiological

sates such as arterial aneurysm formation [1,55,16,54,40,20], blood
vessel tortuosity and buckling [24,5,13,22,23,43,2,3], and formation
of skin wrinkles [11,12]. Despite the negatives, loss of deformation
stability can also play a positive role and can be physiologically
advantageous. For instance, the collapse of lower limb veins during
skeletal muscle contraction, which helps move blood towards the
heart against gravity [21,56,57], is a perfect example. This mechan-
ism is better known as the skeletal-muscle pump.

Elastic instability can be understood from two different view-
points [18]. The first approach, dealing with limit point instability,
focuses on the existence of a local extreme in the mechanical
response of the material [15,16,18,40]. This situation is well-
known from an inflation of balloons and cylindrical tubes made
from an elastomer. Their mechanical response is characterized by
high initial resistance to inflation. However, as pressurization
continues, pressure increments necessary for radial expansion
decrease and subsequently a maximum pressure is reached.
Material response follows with decreasing pressure although the
deformation still increases. Maximum pressure may be either local
or global maximum depending on specific constitutive model of
the material.

From the second viewpoint, the instability is understood as a
bifurcation of the solution of a boundary value problem. In the
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example of the inflation of a cylindrical tube, the bifurcation of the
solution means that deformed tube may experience configurations
different from ordinary uniform radial expansion. The bulging (the
tube locally expands in the radial direction), the loss of circularity
of the cross-section, and the buckling (the tube deflects in a way
that is similar to a long slender column under compression) may
appear during pressurization [10,41,26,55,2,3,44,52]. More com-
plex deformation modes such as a local bulge on a deflected tube
[17,42] may also appear. Deformed configurations corresponding
to bifurcated solutions are obtained by solving the problem
formulated by means of the theory of incremental deformations
[6], where small (localized) displacements are superimposed on a
finite solution [27,18,26,48,55]. In other words, bifurcated solu-
tions are located in close neighborhood of the finite solution [18].

In the present paper, we will focus on the “limit point
instability” phenomenon occurring in the inflation of hyperelastic
thin-walled cylindrical tubes. The motivation for our study came
from an article entitled Elastic instabilities for strain-stiffening
rubber-like spherical and cylindrical thin shells under inflation,
which was published by Kanner and Horgan [40].

Kanner and Horgan [40] investigated the existence of limit point
instability in thin-walled hyperelastic tubes with material properties
described by Gent's elastic potential [14,34–37]. The Gent hyper-
elastic model is phenomenological analog to the limiting (finite)
chain extensibility models derived from the concept of finitely
extensible macromolecular chains within the framework of the
statistical theory of elastomers [4,7,8,50]. These models are espe-
cially suitable to describe mechanical response characterized by
rapid strain stiffening, which is for instance, the case of soft tissues.

Kanner and Horgan [40] showed that, depending on the
specific value of the limiting extensibility parameter Jm of the
Gent model, non-monotonic inflation of thin-walled cylindrical
tubes may or may not occur. To be more specific, the inflation is
always stable for Jmo18.2. In other words, tubes made from
rapidly stiffening material do not exhibit limit point instability.
Kanner and Horgan [40] concluded that the known numerical
values of Jm for arterial tissue correspond to stable mechanical
behavior which suggests that inflation instability is not a mechan-
ism contributing to aneurysm pathophysiology.

The form of the Gent model used by Kanner and Horgan [40] is
isotropic. Nevertheless, it is now widely accepted that anisotropic
constitutive models should be used in studies describing blood
vessels [29,31]. In the present study, limit point instability during
inflation of the cylindrical tube will be analyzed, but in contrast to
Kanner and Horgan [40], the material of the tube will not be
isotropic. It will be anisotropic analog to Gent's elastic potential.
Particular form of the strain energy density function used in our
study is based on limiting fiber extensibility, a concept introduced
by Horgan and Saccomandi [36] and utilized by Horný et al. [39] in
the estimation of material parameters for the human abdominal
aorta. It will be shown that, in stark contrast to isotropic material,
the unstable response is predicted not only for large values of Jm
but also for JmE1 and smaller, and that the existence of limit point
instability significantly depends on the orientation of preferred
directions and on the ratio of linear parameters in the strain
energy density function, which can be interpreted as the ratio of
fiber-to-matrix weights.

2. Constitutive model

The material of the tube will be considered to be incompres-
sible and hyperelastic characterized by the strain energy function
W defined per unit reference volume. In such a case the consti-
tutive equation can be written in the form (1), Holzapfel [28]. Here
σ denotes the Cauchy stress tensor. F is the deformation gradient

defined as F¼∂x/∂X, where x and X, respectively, denote the
position vector of a material particle in the deformed and the
reference configuration. p plays the role of a Lagrangian multiplier
which represents the hydrostatic contribution to σ, not captured
by W, due to the incompressibility constraint

σ ¼ �pIþ∂W
∂F

FT ð1Þ

Over the last decades, several models for W have been
proposed to describe the mechanical behavior of elastomers and
soft tissues under large strains. The classic approach, proposed by
R.S. Rivlin, was to suggest that W is a polynomial function of strain
invariants. Such functions, though suitable for elastomers, do not
appropriately describe mechanical behavior of soft tissues exhibit-
ing rapid strain stiffening [29,30]. It has been recently shown that
models based on the concept of limiting chain extensibility are
suitable for both elastomers and soft tissues [35,51,38,39]. In their
study focused on inflation stability, Kanner and Horgan [40]
investigated a model of W based on this concept. More specifically,
it was a phenomenological analog proposed by Gent [14], WG. Its
mathematical form is expressed in the following equation:

WG ¼ �μJm
2

ln 1� I1�3
Jm

� �
ð2Þ

Here μ is the shear modulus at infinitesimal strains. I1 denotes
the first invariant of the right Cauchy-Green strain tensor C
(I1¼trace(C)), where C¼FTF. Jm is referred to as the limiting
extensibility (dimensionless) parameter because it restricts admis-
sible deformations of the material to the domain where I1�3o Jm
applies. In other words, I1�3-Jm

- implies W-1. Thus finite
extensibility of a macromolecular chain is, using the phenomen-
ological approach, captured by a suitable mathematical form of the
strain energy (logarithmic function). It is also clear that this
mathematical choice gives the stress–strain relationship that in
some intervals increases more rapidly than the polynomial and
exponential functions. Regarding inflation instability, Kanner and
Horgan [40] found that there is a critical value of Jm, Jm¼18.2,
which discriminates the behavior of a pressurized thin-walled
cylindrical tube. The inflation is stable (monotonically increasing
pressure for increasing circumferential stretch) for materials with
Jmo18.2. Whereas for materials with Jm418.2, there is a local
maximum followed by local minimum that is subsequently fol-
lowed by a steeply increasing section of the pressure–stretch curve
(see [40, Figure 5]).

In contrast to industrial rubber-like elastomers, there is only a
limited extent to which isotropic material models can be utilized
for biological tissues. It is well known that although they are
inherently macromolecular similarly to elastomers, soft tissues
exhibit more or less anisotropic behavior, which results from their
complicated hierarchical structure where amino acids are aggre-
gated into polypeptide chains, the chains into specific protein
macromolecules, the proteins into fibrils, and finally the fibrils are
arranged into fibers that are visible on a microscopic scale (i.e.
there are four orders of spatial arrangement; [9]). Horgan and
Saccomandi [36] recently proposed an anisotropic constitutive
model that was inspired by the limiting chain extensibility concept.
The specific form of strain energy density is shown in the
following equation:

WHS ¼
μ
2
I1�3ð Þ�

X
k ¼ 4;6

νJm
2

ln 1� Ik�1ð Þ2
Jm

 !
ð3Þ

The model (3) is composed of the neo-Hookean part, which can
be interpreted as the contribution of the isotropic matrix, and two
logarithmic terms that depend on the deformation invariants I4
and I6. I4 and I6 are defined as the square of the stretch of the unit
referential vectors M and N aligned with the preferred directions
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