Accepted Manuscript

Full Length Article

The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation

Iveta Kaskow, Piotr Decyk, Izabela Sobczak

PII: S0169-4332(18)30650-0

DOI: https://doi.org/10.1016/j.apsusc.2018.02.285

Reference: APSUSC 38743

To appear in: Applied Surface Science

Received Date: 14 October 2017 Revised Date: 23 February 2018 Accepted Date: 28 February 2018

Please cite this article as: I. Kaskow, P. Decyk, I. Sobczak, The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.02.285

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The effect of copper and silver on the properties of Au-ZnO catalyst and its

activity in glycerol oxidation

Iveta Kaskow, Piotr Decyk, Izabela Sobczak*

A. Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznan, Poland

Abstract

The goal of this work was to use ZnO as a support for gold and copper (Au-Cu system) or

gold and silver (Au-Ag system) and comparison of the effect of copper and silver on the

properties of gold and its activity in glycerol oxidation with oxygen in the liquid phase. The

samples prepared were fully characterized by XRD, TEM techniques and UV-Vis, XPS, ESR

spectroscopic methods. It was found that the introduction of copper and silver changed the

electronic state of gold loaded on ZnO by the electron transfer between metals. Three

different metallic gold species were identified in calcined catalysts: (Au⁰)^{δ-} (Au-ZnO), (Au⁰)^{η-}

(AuCu-ZnO) and $(Au^0)^{\gamma}$ (AuAg-ZnO), where $\delta^2, \eta^2, \gamma^2$ indicate a different partial negative

charge on metallic gold and $\gamma > \delta > \eta$. The results showed that $(Au^0)^{\eta}$ centers (metallic gold

with the lowest negative charge) formed on AuCu-ZnO were the most active in glycerol

oxidation. The increase in the negative charge on metallic gold loaded on AuAg-ZnO reduced

the gold activity in silver containing sample. The glyceric acid adsorption and desorption rate

influenced the selectivity of the catalysts.

Keywords: ZnO, AuCu and AuAg systems; interactions between metals; glycerol oxidation

*Corresponding author: e-mail: sobiza@amu.edu.pl

1

Download English Version:

https://daneshyari.com/en/article/7834413

Download Persian Version:

https://daneshyari.com/article/7834413

<u>Daneshyari.com</u>