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a b s t r a c t

In this paper, the buckling and post-buckling behavior of an elastic lattice system referred to as the
discrete elastica problem is investigated using an equivalent non-local continuum approach. The
geometrically exact post-buckling analysis of the elastic chain, also called Hencky system, is first
numerically solved using the shooting method. This discrete physical model is also mathematically
equivalent to a finite difference formulation of the continuum elastica. Starting from the exact difference
equations of the discrete problem, a continualization method is applied for approximating the difference
operators by differential ones, in order to better characterize the discrete system by an enriched
continuous one. It is shown that the new continuum associated with the discrete system exactly fits the
discrete elastica post-buckling problem, where the non-locality is of Eringen's type (also called stress
gradient non-local model). An asymptotic expansion is performed for both the discrete and the non-local
continuum models, in order to approximate the post-buckling branches of the discrete system. Some
numerical investigations show the efficiency of the non-local approach, especially for capturing the scale
effects inherent to the cell size of the lattice model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The transition from discrete to continuous nature of structural
morphology is of primary interest in physics for understanding
how the microstructure may influence the macroscopic properties
of the material on a larger scale. Matter is intimately discrete at a
finer scale, especially at the atomistic scale, while engineering
models are usually predicated on some continuous assumptions
for efficient computational cost and mathematical investigations.
There is already a large body of literature devoted to the transition
between lattice systems to continuous systems, especially for the
linear range (see for instance [1]). However, most of the reported
results in this area are confined to the linear range and are
restricted to some so-called local constitutive laws for the equiva-
lent continuum, without any possibilities for capturing properly
the transition from the discrete to the continuum nature of the
material. This paper aims to contribute to a better understanding
of the transition from a discrete to a continuous modeling in the
presence of geometrical non-linearities. Both discrete and contin-
uous models are formulated into a geometrically exact framework.

The buckling and post-buckling behavior of an elastic lattice
system referred to herein as the discrete elastica problem is
investigated via an equivalent non-local continuum approach.

The investigation of buckling and post-buckling behaviors of
inextensible elastic columns (linearized problem and geometrically
exact formulation) dates back to the mid 1700s [2]. On the other
hand, the discrete elastic bar-chain problem was only analysed in the
early part of the 1900s. A discrete formulation of Euler's problemwas
first studied by Hencky in 1920 [3] who considered an elastic bar-
chain composed of rigid links connected by rotational springs. Hencky
[3] showed that this systemmay asymptotically converge towards the
Euler one for an infinite number of links. Note that Hencky did not
provide the analytical solutions of the buckling load for an arbitrary
number of links n, but he presented solutions only for n¼2, 3 or 4.
This problem has been reconsidered by Wang [4,5] who gave the
buckling solution for any number of links n. In fact, Wang [4,5] solved
a linear second-order difference equation (see for instance [6] for a
general overview of difference equations) and analytically obtained
the buckling load associated with the corresponding boundary value
problem. Silverman [7] also mentioned the mathematical analogy
between Hencky's system and the central finite difference formula-
tion of Euler's problem. This buckling problem was reconsidered by
Seide [8] in terms of the finite difference method (which may be
regarded as equivalent to the algebraic equations of Hencky system),
and compared to other numerical methods for general boundary
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conditions. Such a paradigmatic structural problem was reconsidered
by Gáspár and Domokos [9], Domokos [10] or Domokos and Holmes
[11] who pointed out the very rich structure inherent to the discrete
property of the structural system, and the possible spatial chaotic
behavior of Hencky bar-chain to be far away from the first initial
bifurcated branch. Domokos and Holmes [11] also showed the
mathematical equivalence of the finite difference formulation of Euler
problem and the Hencky system in the non-linear range. It is worth
mentioning that the spatial chaotic behavior of discrete chains has
been also observed for non-conservative systems by Kocsis and
Károlyi [12]. More recently, Wang et al. [13] or Challamel et al.
[14,15] showed the possibility of linking the linearized Hencky system
to non-local mechanics. Non-local mechanics is understood herein as
an Eringen's type non-local differential model [16] where an implicit
differential equation is assumed between the stress and the strain (or
the bending moment and the curvature at the beam scale). This non-
local model is also known as a stress gradient non-local model.

The non-local methodology has been mainly applied to the
linearized problem, and one open question remains to be addressed,
i.e. whether it can be applied in the non-linear range as well? To
answer this question, we consider the non-local elastica and find out
if it is able to capture the scale effects of Hencky chain, i.e. the discrete
elastica. It is worth mentioning that the non-local elastica has been
already investigated analytically or numerically by Wang et al. [17] or
Shen [18] for perfectly straight non-local columns, or Xu et al. [19]
who considered some initial imperfections. Shen [18] also performed
some asymptotic expansions in order to obtain some approximated
analytical expressions for the post-bifurcated branch. The optimiza-
tion of non-local elastic columns has been also recently reported by
Atanackovic et al. [20].

The paper is organized as follows. The geometrically exact post-
buckling analysis of the elastic chain, also called Hencky system, is
first numerically solved by using the shooting method. This
discrete physical model is also mathematically equivalent to a
finite difference formulation of the continuum elastica. Starting
from the exact difference equations of the discrete problem, a
continualization method is then applied for approximating the
difference operators by differential ones, in order to better
characterize the discrete system by an enriched continuous one.
It is shown that the new continuum associated with the discrete
system exactly fits the initial lattice problem, where the non-
locality is of Eringen's type, also called stress gradient non-local
model. An asymptotic expansion applied to the non-local elastica
is performed for approximating the post-buckling branches of the
discrete model. The analytical results of Shen [18] are found again
for the non-local elastica and fit well the numerical results issued
of the discrete systemwith the correct length scale calibration. We
also presented an asymptotic expansion directly applied to the
discrete elastica, which is not available in the literature, to the
authors' knowledge. Some numerical investigations show the
efficiency of the non-local approach, especially for capturing the
scale effects inherent to the cell size of the lattice model. It is
worth noting that there is an analogy between the elastic
pendulum equation (dynamics initial value problem) and the
elastica equation (static boundary value problem). This Kirchhoff
analogy (see [21]; see also the discussion in [22,23] or [11])
triggers us to believe that the non-local spatial concepts developed
herein can be probably generalized to a kind of time non-locality
for the dynamics problem.

2. Discrete elastica

Consider a Hencky's bar-chain with pinned–pinned ends as
shown in Fig. 1. The column, composed of n repetitive cells of size
denoted by a, is axially loaded by a concentrated force denoted by

P. The discrete column of length L is modeled by some finite rigid
segments and elastic rotational springs of stiffness k¼EI/a, where
EI is the bending rigidity of the local Euler–Bernoulli column
asymptotically obtained for an infinite number n of rigid links. In
other words, the total length of the structure L is equal to L¼n� a,
the number of rigid segments multiplied by the size of each
segment.

The discrete version of the local elastica can be obtained from
the following system of non-linear difference equations:

Mi ¼ EI
θiþ1�θi

a
and

Mi�Mi�1

a
þP sin θi ¼ 0 ð1Þ

Here Mi is the bending moment in the rotational spring at hinge i,
and θi is the angle of the ith link from the line of action of
compressive force P. In other words, θi is the rotation angle of the
segment i connecting the (i�1)th and the ith nodes.

As pointed out by Domokos and Holmes [11], these difference
equations (1) are similar to the forward and the backward finite
difference equations of the continuous elastic problem, where the
step size is equal to the length of the rigid link a. In this concept, the
differential equation system of the axially compressed, hinged-hinged
elastica, M ¼ EI � dθ=ds and dM=dsþP sin θ¼ 0, are discretized
using forward and backward differences, respectively. This yields a
semi-implicit Euler method, which defines an area preserving map.

The non-linear second-order difference equation is obtained
from Eq. (1):

EI
θiþ1�2θiþθi�1

a2
þP sin θi ¼ 0 ð2Þ

This non-linear difference equation is reformulated in a dimen-
sionless form

θiþ1�2θiþθi�1 ¼ � β

n2 sin θi ð3Þ

by using the dimensionless load β¼ PL2=EI. The non-linear differ-
ence equation can be equivalently reformulated with the following
relations:

θiþ1 ¼ θiþ
κ̂i
n

and κ̂iþ1 ¼ κ̂i�
β

n
sin θiþ1 ð4Þ

with the dimensionless curvature κ̂i defined by κ̂i ¼ Lκi and the
curvature κi ¼Mi=EI. The boundary conditions of the hinged-
hinged column are obtained from the vanishing of the bending
moments at both ends, i.e. M0 ¼ 0 and Mn ¼ 0:

θ1 ¼ θ0 and θnþ1 ¼ θn ð5Þ
Note that an equivalent system may be obtained by discretizing the
differential equations of the local elastica with central differences:

Mi ¼ EI
~θ iþ1=2� ~θ i�1=2

a
and

Miþ1=2�Mi�1=2

a
þP sin ~θ i ¼ 0 ð6Þ

leading to the same non-linear difference equation:

~θ iþ1�2 ~θ iþ ~θ i�1 ¼ � β

n2 sin ~θ i ð7Þ

The equivalence between the two discretizations is obtained from the

Fig. 1. Hencky's chain: n rigid links are connected by hinges and rotational springs.
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