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a b s t r a c t

An elementary geometric method is established to study non-linear second order differential equations
with step function coefficient

x″þa2ðtÞgðxÞ ¼ 0; aðtÞ≔ak if tk�1rtotk ðkANÞ;
where ak40, tk↗1 as k-1. The equation is rewritten into a discrete dynamical system on the plane.
The method is applied to the excited pendulum equation when gðxÞ ¼ sin x. Starting from the usual
periodic model, the problem of parametric resonance (problem of swinging) is investigated. It will be
pointed out that the realistic model of swinging is not a periodically excited system, instead swing is a
self-oscillating system. Finally, the classical Oscillation Theorem is extended to the non-linear periodic
pendulum equation

ψ ″þa2ðtÞ sin ψ ¼ 0;

aðtÞ ¼

ffiffiffiffiffiffiffiffiffiffi
g

l�ε

r
if 2kTrto ð2kþ1ÞT ;ffiffiffiffiffiffiffiffiffiffi

g
lþε

r
if ð2kþ1ÞTrto ð2kþ2ÞT ðkAZþ Þ;

8>>><
>>>:

where g and l denote the constant of gravity and the length of the pendulum, respectively; ε40 is a
parameter measuring the intensity of swinging

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-autonomous second order differential equations

x″ ¼ f ðt; xÞ ðxARnÞ;
whose right-hand sides explicitly depend on time t, model
mechanical systems either being perturbed by external forces
changing in time or containing some parameters that can vary as
functions of time independently of state variables. In the latter
case the system is parametrically excited. A classical parametrically
excited system describing the motion of the lunar perigee is Hill's
equation [1–4]

x″þa2ðtÞx¼ 0; ð1Þ
where coefficient a(t) is 2T-periodic. Lyapunov [5] and Haupt [6,7]
proved the famous Oscillation Theorem about the existence of 2T-

and 4T-periodic solutions. Meissner [8] studied the case when the
coefficient a(t) is a piecewise constant function assuming two
different values. This case is of special interest in technical
applications [9] and control due to, among others, the bang–bang
principles. As Hochstadt [10] pointed out, this case is also
important because the conditions guaranteeing the existence of
periodic solutions can be expressed by elementary functions. In
[11] we have established an elementary geometric method that
was suitable for proving not only its existence part but the
complete Oscillation Theorem including the oscillation properties
of the solutions [12, p. 214]. The method is constructive, it yields
the solutions themselves.

The mathematical model of swinging is also a parametrically
excited equation of the form

x″þa2ðtÞ sin x¼ 0 ð2Þ

with an appropriate step function a(t). The swinger has to choose a(t)
so that the zero solution be unstable (parametric resonance). In this
paper at first we establish the realistic model of optimal swinging.
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Then we show that our method can be used for generalizing the
Oscillation Theorem [2] to the non-linear equation (2).

The paper is organized as follows. In Section 2 we extend the
method in [11] to the non-linear equation of the form

x″þa2ðtÞgðxÞ ¼ 0

with an arbitrary step function a. In Section 3 we show that the
realistic model of swinging is not a periodically excited system,
instead swing is a self-oscillating system. In Section 4 we give the
extension of the Oscillation Theorem to the parametrically excited
pendulum equation (2). Sections 3 and 4 used the same method
established in Section 2, but they are independent of each other,
they can be read in any order.

2. The method

2.1. The phase plane and the dynamics

Let a continuously differentiable function g : R-R, two
sequences fakg1k ¼ 1, ftkg1k ¼ 1 be given such that ak40,
0otkotkþ1 for all kAN, and let t0≔0. Consider the non-linear
second order differential equation

x″þa2ðtÞgðxÞ ¼ 0; aðtÞ≔ak if tk�1rtotk ðkANÞ: ð3Þ
It is easy to see that

1
2

x0ð Þ2þa2kGðxÞ ¼ ck GðxÞ≔
Z x

0
gðsÞ ds

� �

is a first integral of (3) on the interval ½tk�1; tkÞ. To make the left-
hand side of the first integral independent of k, introduce the new
variable y¼ x0=ak. Eq. (3) is equivalent to the system

x0 ¼ aky; y0 ¼ �akgðxÞ ðtk�1rtotk; kANÞ ð4Þ
having the first integral

Hðx; yÞ≔1
2
y2þGðxÞ ¼ ck ðtk�1rtotk; kANÞ; ð5Þ

therefore trajectories of the system on the plane (x,y) consist of
pieces of curves Hðx; yÞ ¼ ck ðkANÞ. However, while global trajec-
tories ½0;1Þ-R2 of (3) on the plane ðx; x0Þ have to be continuous
curves, those of (4) are not continuous in general. Now we
describe the dynamics of (4) on the (x,y) plane.

Let a trajectory originate from the point ðξ0;η0Þ; the solution of
(4) starting from this point at t0 is denoted by

ðxðtÞ; yðtÞÞ ¼ ðxðt; t0; ξ0;η0Þ; yðt; t0; ξ0;η0ÞÞ:
The first piece of the trajectory is located on the curve Hðx; yÞ ¼
η20=2þGðξ0Þ and goes to the point

xðt1�0Þ≔ lim
t-t1 �0

xðt; t0; ξ0;η0Þ; yðt1�0Þ ¼ lim
t-t1 �0

yðt; t0; ξ0;η0Þ:

The second piece of the trajectory originates from a point ðξ1;η1Þ
and is located on the curve Hðx; yÞ ¼ η21=2þGðξ1Þ with a properly
chosen ðξ1;η1Þ. Since the corresponding solution ðx; x0Þ of (3) have
to be continuous on the interval ½t0; t2Þ at t ¼ t1, we have

ξ1 ¼ xðt1Þ ¼ xðt1�0Þ; η1 ¼ yðt1Þ ¼
x0ðt1Þ
a2

¼ x0ðt1�0Þ
a2

¼ a1
a2

yðt1�0Þ:

This means that the trajectory “jumps” at t ¼ t1 from the point
ðxðt1�0Þ; yðt1�0ÞÞ to the point ðxðt1�0Þ; ða1=a2Þyðt1�0Þ. Geometri-
cally, this transformation is a contraction or a dilation of the measure
a1=a2 on the plane (x,y) in the direction of axis y. After the jump the
trajectory goes continuously to the point xðt2�0; t1; ξ1;η1Þ; yðt2�0;
t1; ξ1;η1Þ along the curve Hðx; yÞ ¼ η21=2þGðξ1Þ. Similar to the point
t1, at t2 the trajectory jumps to the point ðξ2;η2Þ≔ðxðt2�0Þ; ða2=
a3Þyðt2�0ÞÞ. And so on, the trajectory repeats these two steps. The

complete system describing the dynamics on ½0;1Þ reads as follows:

x0 ¼ aky; y0 ¼ �akgðxÞ if tk�1rtotk;

xðtkÞ ¼ xðtk�0Þ; yðtkÞ ¼
ak

akþ1
yðtk�0Þ ðkANÞ;

8<
: ð6Þ

which is a differential equation with impulses. The motion starting
from ðξ0;η0Þ at t¼0 can be characterized by the sequence
ðξk;ηkÞ ¼ ðxðtkÞ; yðtkÞÞ (kAZþ≔f0;1;2;…g) uniquely determined by
ðξ0;η0Þ ¼ ðxð0Þ; yð0Þ. For example, to know the long time behavior of
motions it is enough to know the sequences fðξk;ηkÞg1k ¼ 0.

2.2. The jump in polar coordinates

We introduce the polar coordinates ðr;φÞ on the plane (x,y) by

x¼ r cos φ; y¼ r sin φ ðr40; �1oφo1Þ; ð7Þ

and express the linear transformation

Cκ : ðx; yÞ↦ðx; κyÞ ð0oκo1Þ ð8Þ

in these coordinates.
Denote by ðrC ;φCÞ ¼ ðρðr;φ; κÞ;ϕðφ; κÞÞ the image of the point

ðr;φÞ in polar coordinates at the contraction-dilation (8). Then

ρðr;φ; κÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þκ2y2

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðκ2�1Þ sin 2 φ

q
¼ f ðφ; κÞr;

f ðφ; κÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðκ2�1Þ sin 2 φ

q
ðκ40; �1oφo1Þ:

For ϕðφ; κÞ, we know that tan ϕðφ; κÞ ¼ κy=x¼ κ tan φ for
xa0, consequently

ϕðφ; κÞ≔
arctanðκ tan φÞþ

φþπ
2

π

2
64

3
75π if φa ð2kþ1Þπ

2
;

φ if φ¼ ð2kþ1Þπ
2

ðkAZÞ;

8>>>>><
>>>>>:

where ½x� denotes the integer part of xAR.
The following lemma summarizes the basic properties of

functions f and ϕ.

Lemma 2.1. 1. For every κ40 the function f ð�; κÞ : ½0;1Þ-ð0;1Þ is
even and π-periodic; furthermore

f ϕðφ; κÞ;1
κ

� �
¼ 1
f ðφ; κÞ ðφARÞ ð9Þ

(see Fig. 1).
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Fig. 1. Graphs of functions f ð�; κÞ for κo1 and κ41.
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