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a b s t r a c t

Non-linear partial differential equation for description of a laminar, incompressible, Newtonian radial
flow in half-subspace is derived taking into account free slipping at a border. The boundary layer
approximation is used and the equation with one free parameter for a steam function is obtained. The
general solution for one value of this parameter is found and analysed. Some approximate solutions of
the special form are constructed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Prandtl's boundary layer theory was applied to the two-
dimensional round steady laminar flow by Schlichting [1] and
Bickley [2]. They studied a free two-dimensional jet emerging from
a thin long hole into a fluid at rest and solved analytically resulting
ordinary differential equation using self-similar variables. Later the
application of the boundary layer theory to laminar jets was fully
discussed in monographs [3,4].

Mason [5] derived a group invariant solution for a steady two-
dimensional jet by considering a linear combination of the Lie
point symmetries of Prandtl's boundary layer equations for jet.
This solution has the form, assumed by Schlichting [1]. Schlichting
also derived a conservation law for the differential equation for a
stream function. Application of conservation laws as a systematic
way to derive conserved quantities for jet is presented in [6].
Authors considered two-dimensional and axisymmetric jets with
some types of boundary conditions. They applied the multiplier
approach to a system for velocity components and a third-order
partial differential equation for the stream function. The partial
Lagrangian method is used to obtain same results for free jet in [7].
The steady two-dimensional boundary-layer equations in the flat
and axisymmetric case were studied in [8]. Authors show that
many proposed in many works new methods of reduction are

indeed invariant solutions under the action of non-classical sym-
metries. Also they show that Mises transformation can be con-
sidered as Bäcklund transformation related to a non-classical
symmetry. The non-classical symmetries of boundary layer equa-
tions for two-dimensional and axisymmetric flows have been
considered also in [9]. In work [10] exact solutions of the equations
of a stationary laminar boundary layer are reviewed. A general
transformation of the three-dimensional boundary layer equations
is presented in an arbitrary orthogonal curvilinear coordinate
system. Extension of the Crocco transformation is used to inves-
tigate unsteady boundary layer equations in [11]. The review of
equation describing the unsteady axisymmetric boundary layer on
a body of revolution with arbitrary shape is presented in [12]. A
number of new exact solutions involving two to five arbitrary
functions are found.

In this work we derive the equation for radial flow of incom-
pressible liquid in half-subspace over flat horizontal bottom. A free
slipping boundary condition is used. We assume that the flow
layer is thin, so we use the boundary layer approximation. Under
this assumption, equation with a free parameter for a steam
function is obtained. The general self-similar solution of this equ-
ation is obtained at particular conditions and three types of flows
are given. Quasi-exact solutions are found to extend possible
values of parameters in equation at which solution exists.

The outline of this manuscript is the following. In Section 2 we
derive Prandtl's boundary layer equation for axial flow. Section 3 is
devoted to finding of the general solution of equation at some
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conditions. Some analysis of solution is performed. The quasi-
exact solution at other conditions is found in Section 3.

2. Problem formulation

Let us consider the Navier–Stokes equations for axisymmetric
flow when tangential velocity is equal to zero. We use the
approximation of the boundary layer theory with a constant
pressure field. In this case the Navier–Stokes equation for radial
component of velocity and continuity equation in polar variables
has the form

u
∂u
∂x

þv
∂u
∂y
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∂2u
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þ ∂
∂x

u
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� �
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We assume that linear size of problem along x is L and the y-
variation of the radial velocity is U. The laminar boundary layer is
thin in comparison with L and has the size δLðδ⪡1Þ. From con-
tinuity equation (2.2) and condition at the bottom border

vjy ¼ 0 ¼ 0 ð2:3Þ
we get that v� δU. Using these assumptions, the parameter ν can
be expressed via the Reynolds number

ν¼ μ
ρ
¼UL
Re

:

One can see that all members on the left-hand side of Eq. (2.1)
has the order U2=L. To keep the terms on the right-hand side of
equation the Reynolds number must has the order 1=δ2. The first
two members in brackets on the right-hand side of considered
equation are much smaller and we can neglect them. As a result
we have
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We seek for a solution of system (2.4), (2.5) using the stream
function:

u¼ 1
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; v¼ �1
x
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: ð2:6Þ

After substituting (2.6) into Eqs. (2.4) and (2.5), the system is
reduced to equation on ψ ðx; yÞ known as Prandtl's boundary layer
equation for a radial flow
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where ν40 is the kinematic viscosity. It can be shown that Eq.
(2.7) admits a dilation group of transformation, and we can search
for a self-similar solution of Eq. (2.7) using new variables

ψ ðx; yÞ ¼ x2�βHðzÞ; z¼ y
xβ
: ð2:8Þ

Taking into account (2.8), Eq. (2.7) can be written in the form
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þ 2�β
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¼ 0: ð2:9Þ

This equation can be reduced to the well-known Chazy equations
(see, for example, [13–15]) at two values of parameter β. At β¼1
using the following transformations:

z¼ Lz0; H ¼ 2LνH0

we have Chazy-II equation

H‴ ¼ 2HH″þ2H02:

Applying

z¼ Lz0; H¼ Lν
3
H0

we have Chazy-III equation

H‴ ¼ 2HH″�3H02:

The first of these equations can be easily integrated. The second
one has Painlevé property and it is the simplest example of an
ordinary differential equation whose solution has a movable nat-
ural boundary.

3. General solution of Eq. (2.9) at β ¼ 1

In the case of β¼ 1 Eq. (2.9) takes the form

ν
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dz3
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þ dH
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¼ 0

and can be integrated twice. We have the Riccati equation in the
form [15]

dH
dz

þ 1
2ν

H2 ¼ C1zþC2; ð3:1Þ

where C1 and C2 are integration constants. Eq. (3.1) can be
obtained by using exponential non-local symmetries [16,17]. This
equation is invariant under transformations

ðz;H;C1Þ↦ð�z; �H; �C1Þ:
Without loss of generality we can assume that zZ0, i.e. yZ0. We
have to consider two different cases: C1 ¼ 0 and C1a0.

In the first case (C1 ¼ 0) we have an equation for tanh-function
and its real-valued solution has the form [18]

HðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2νC2

p
tanh

ffiffiffiffiffiffi
C2

2ν

r
zþC3

 !
: ð3:2Þ

This solution can be obtained by simplest equation method. For
example, Q-function method [19–21] gives the solution in the
present form.

In the second case (C1a0) after changing of variables

ðz;HÞ↦ �z�C2

C1
; �2νH

� �
ð3:3Þ

Eq. (3.1) can be written as

dH
dz

þH2þC1

2ν
z¼ 0:

It can be linearized by the transformation

HðzÞ � y0ðzÞ
yðzÞ :

As a result we have

y″þC1

2ν
yz¼ 0:

Rescaling the independent variable by formula

z↦� 2ν
C1

� �1=3

z ð3:4Þ

we obtain the equation for the Airy function in the form

y″�yz¼ 0: ð3:5Þ
It is interesting to note that Airy equation appears in solving
Chazy-XXI equation in the special case [14]. Solution of Eq. (3.5)
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