Accepted Manuscript

Full Length Article

Adsorption behavior of COF₂ and CF₄ gas on the MoS₂ monolayer doped with Ni: a first-principles study

Yi Li, Xiaoxing Zhang, Dachang Chen, Song Xiao, Ju Tang

PII: S0169-4332(18)30615-9

DOI: https://doi.org/10.1016/j.apsusc.2018.02.252

Reference: APSUSC 38710

To appear in: Applied Surface Science

Received Date: 10 December 2017 Revised Date: 1 February 2018 Accepted Date: 25 February 2018

Please cite this article as: Y. Li, X. Zhang, D. Chen, S. Xiao, J. Tang, Adsorption behavior of COF₂ and CF₄ gas on the MoS₂ monolayer doped with Ni: a first-principles study, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.02.252

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Adsorption behavior of COF₂ and CF₄ gas on the MoS₂ monolayer doped with Ni: a first-principles study

Yi Li¹, Xiaoxing Zhang^{1,2*}, Dachang Chen¹, Song Xiao¹ and Ju Tang¹

*E-mail: xiaoxing.zhang@outlook.com

Phone: +86 13627275072

Address: School of Electrical Engineering, Wuhan University, BaYi Street No.299, Wuhan, Hubei province, People's Republic of China

Abstract

 CF_4 and COF_2 are the two main decomposition products of fluorocarbon gas insulating medium. We explored the gas sensing properties of Ni-MoS₂ to CF_4 and COF_2 based on the density functional theory calculations. The adsorption energy, charge transfer, density of states and electron density difference have been discussed. It was found that the interaction between COF_2 molecule and Ni-MoS₂ is strong, and the adsorption energy is 0.723 eV. Ni-MoS₂ acts as the electron donor and transfers some electrons to COF_2 molecule during the interaction. The adsorption energy of CF_4 on Ni-MoS₂ is lower than that of COF_2 , and the interaction between them belongs to physical adsorption. Ni-MoS₂ has the potential to be used as a gas sensor for COF_2 detection using in the field of gas insulated switchgear on-line monitoring.

Keywords: COF₂, CF₄, Ni-MoS₂ monolayer, adsorption, first-principles calculation

1 Introduction

SF₆, which has been widely used in the power industry, is a strong greenhouse gas with the global warming potential (GWP) up to 23500 and the atmospheric lifetime of 3200 years. [1-3] In recent years, as CF₃I (Trifluoroiodomethane), c-C₄F₈ fluorocarbon gases such (Octafluorocyclobutane) have been the focus of alternative-gas research due to their excellent environmental and insulating properties [4]. In practical engineering applications, CF₃I and c-C₄F₈ may decompose to produce free radicals such as CF₃ and CF₂ in a discharge. These free radicals can react with trace water or oxygen in the devices, producing some decomposition products such as COF₂ and perfluorocarbons [5]. The generation of the decomposition products is closely related to the insulation status of gas insulating medium. And the formation of toxic products, COF₂, not only poses a threat to the safety of maintenance personnel, but also causes corrosion to the inner wall of the equipment. Therefore, it is necessary to monitor the contents of typical decomposition products.

In recent years, two-dimensional (2D) nanosheets have gained numerous attention. In particular, 2D MoS₂ is proved to be a versatile material for a wide variety of applications such as nanoelectronic devices, catalysis as well as gas sensors [6-8]. Recent researches have shown that MoS₂ nanosheets can sensitively sense a number of molecules. *Late et al.* studied the sensing

¹ School of Electrical Engineering, Wuhan University, Wuhan 430072, China

² State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China

Download English Version:

https://daneshyari.com/en/article/7834544

Download Persian Version:

https://daneshyari.com/article/7834544

Daneshyari.com