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a b s t r a c t

We consider in this paper the free and forced vibration response of simply-supported functionally graded
(FG) nanobeams resting on a non-linear elastic foundation. The two-constituent Functionally Graded
Material (FGM) is assumed to follow a power-law distribution through the beam thickness. Eringen's
non-local elasticity model with material length scales is used in conjunction with the Euler–Bernoulli
beam theory with von Kármán geometric non-linearity that accounts for moderate rotations. Non-linear
natural frequencies of non-local FG nanobeams are obtained using He's Variational Iteration Method
(VIM) and the direct and discretized Method of Multiple Scales (MMS), while the primary resonance
analysis of an externally forced non-local FG nanobeam is performed only using the MMS. The effects of
the non-local parameter, power-law index, and the parameters of the non-linear elastic foundation on
the non-linear frequency-response are investigated.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, several investigators have focused their attention on
developing structural theories for rods, beams, plates, shells and other
structural systems that incorporate the effect of material length scales.
Modern devices like microactuators, microswitches, biosensors,
nanowires, nanoprobes, ultra thin films, and MEMS and NEMS [1–5]
use miniaturized beams as a structural basis. Arash and Wang [6]
demonstrated that material properties are size-dependent at the
nano-scale thereby reinforcing the necessity to consider small length
scale effect when simulating these micro- and nano-structures. Unlike
classical continuum mechanics theories, non-local elasticity theories
incorporate these size-dependent effects when modeling these
structures. The use of such theories has found attractive applications
in several areas including fracture mechanics, lattice dispersion of
elastic waves, dislocations and wave propagation [7].

A number of size-dependent theories have been put forward in the
literature, which include Eringen's non-local elasticity theory [8–11],
modified couple stress theory of Mindlin [12], Koiter [13], and Toupin
[14], and the strain gradient theory [15–17]. The strain gradient theory
and the modified couple stress theory, although different, can be

correlated [18]. A limited number of investigators exploited the
modified couple stress and the strain gradient theories to model size-
effects in studying linear and non-linear static, vibration and buckling
response of homogeneous micro- and nano-beams [19–27] and
[28,29], respectively. On the other hand, the use of Eringen non-local
elasticity differential model has found more popularity among
researchers. Reddy [30] reformulated the Euler–Bernoulli, Timosh-
enko, Reddy, and Levinson beam theories using Eringen's non-local
differential constitutive relations to find analytical solutions for
bending and bucking of beams. Thai [31] proposed a non-local shear
deformation beam theory to study the bending, buckling and vibra-
tion response of a nanobeam. A similar study was conducted by Roque
et al. [32] on a Timoshenko nanobeam using a meshless method
based on collocationwith radial basis. Li et al. [33] used a perturbation
method to analytically investigate the natural frequency of vibration,
steady-state resonance and stability of a non-local nanobeam with a
variable axial load. Eltaher et al. [34] used a non-local finite element
model to study the static bending and buckling of functionally graded
Euler–Bernoulli nanobeams. The previous studies are all linear pro-
blems. Reddy [35] accounted for the von Kármán non-linear strains
and reformulated classical and shear deformation beam and plate
theories. Similarly, Simsek [36] estimated the non-linear free vibration
problem of an Euler–Bernoulli nanobeam, accounting for the von
Kármán non-linear strains and solved the associated non-linear
ordinary differential equation using He's variational statement [37].
Using the Differential Quadrature Method (DQM), Najar et al. [38]
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studied the pull-in instability of a non-local non-linear response of a
DC voltage excited capacitive nanoactuator modeled as an Euler–
Bernoulli beam with different boundary conditions. The model
accounts for the residual stresses, initial deflection, von Kármán non-
linear strains, electrostatic forcing and intermolecular forces, such as
Casimir and von der Waals forces.

Functionally graded materials (FGMs) have emerged as a pro-
mising alternative to homogeneous coatings [39]. FGMs comprise
of at least two-phase inhomogeneous particulate composites and
are synthesized in such a way that the volume fractions of the
constituents vary continuously along any desired spatial direction,
resulting in materials having smooth variation of mechanical
properties. Such enhancements in properties endow FGMs with
qualities such as resilience to fracture through reduction in pro-
pensity for stress concentration. FGMs promise attractive appli-
cations in a wide variety of wear coating and thermal shielding
problems such as gears, cams, cutting tools, high temperature
chambers, furnace liners, turbines, micro-electronics and space
structures. With the progress of technology and fast growth of the
use of nanostructures, FGMs have found potential applications in
micro- and nano-scale in the form of shape memory alloy thin
films [40], electrically actuated actuators [41], microswitches [42]
and atomic force microscopes (AFMs) [43].

With the recent interest in size-dependent models at the
micro- and nano-level, there has been an increased focus on
characterizing the free and forced vibration of functionally graded
micro- and nanobeams using a number of numerical and analy-
tical techniques. Using the finite element method, Eltaher and co-
workers [34,44,45] studied the linear static bending, vibration and
buckling behaviors of a functionally graded Euler–Bernoulli and
Timoshenko nanobeam. Reddy et al. [46] also used the finite ele-
ment method to model a non-linear non-local functionally graded
microbeam to show the effect of the non-local parameter and
power law index on deflections and stresses.

In addition to these numerical methods, a number of analytical
and semi-analytical methods have been proposed to solve the free
vibration of functionally graded microbeams to develop closed-
form approximations of the non-linear frequency. Using Navier's
method, Uymaz [47] solved analytically the free and forced
vibration problem of a graded nanobeam using various classical
and higher-order beam theories. A similar study was carried out
by Rahmani and Pedram [48] who exploited Navier's method to
study analytically the vibration behavior of graded Timoshenko
nanobeams. Along similar lines, Simsek and Yurtcu [49] employed
Navier's method to perform a bending and buckling analysis of
non-local functionally graded Timoshenko beams. Very recently,
He's Variational Method was applied by Simsek et al. [36,50] to
estimate the non-linear frequency associated with free vibration of
non-local functionally graded Euler–Bernoulli and Timoshenko
beams. Finally, using the method of multiple scales and Galerkin's
method, Nazemnezhad and Hosseini-Hashemi [51] accounted for
the non-linear von Kármán strains and studied analytically the
non-linear free vibration of functionally graded Euler–Bernoulli
nanobeams.

To the best of the authors' knowledge, it can be concluded from
the literature review that very few researchers have focused their
attention on studying the non-linear non-local free and forced
vibration response of homogeneous and graded nanobeams using
analytical methods such as Navier's Method [47–49], He's Varia-
tional Method [36,50] and method of multiple scales [51]. To date
only Hosseini et al. [52] worked on determining the effect of the
power law exponent on the frequency response function for the
forced vibration analysis of functionally graded beams. However,
the study was not conducted at the nanoscale, so therefore does
not consider non-local elasticity theories. The present study is
intended to fill this gap in the literature by considering the non-

local non-linear free and forced vibration response of nanobeams
using He's Variational Iteration Method (VIM) and the Method of
Multiple Scales (MMS). The forced vibration analysis includes
studies related to primary resonance. This paper includes a com-
plete theoretical development of the considered problem and a
parametric study which brings out the effects of the power-law
index and non-local parameter on the free and forced vibration
response.

This paper is organized as follows. Following this introduction,
Eringen's non-local differential model is revisited in Section 2. The
governing equations for a classical and a non-local graded Euler–
Bernoulli beam accounting for moderate rotations are given in
Sections 3 and 4, respectively. The free and forced vibration
solutions obtained using VIM and the discretized and direct MMS
are given in Sections 5 and 6, respectively. Numerical results are
provided in Section 7. Finally, the main contributions and con-
clusions of this study are summarized in Section 8.

2. Eringen's non-local differential model

According to Eringen [8,9], the state of stress σ at a point x in
an elastic continuum not only depends on the strain field ε at the
point, as in the case of classical continuum theories, but also on
strains at all other points of the body. Eringen attributed this to the
atomic theory of lattice dynamics and experimental observations
on phonon dispersion. Thus, the non-local stress tensor σ at point
x is expressed as

σ ¼
Z
Ω
Kðjx0 �xj ; τÞσðx0Þ dx0 ð1Þ

where σðxÞ is the classical, macroscopic second Piola–Kirchhoff
stress tensor (see Reddy [53]) at point x and the kernel function
Kðjx0 �xj ; τÞ represents the non-local modulus, jx0 �xj being the
distance (in the Euclidean norm) and τ is a material parameter that
depends on internal and external characteristic lengths (such as
the lattice spacing and wavelength, respectively). The macroscopic
stress σ at a point x in a Hookean solid is related to the strain ε at
the point by the generalized Hooke's law

σðxÞ ¼ CðxÞ : εðxÞ ð2Þ
where C is the fourth-order elasticity tensor and : denotes the
‘double-dot product’ S : T¼ SijTij.

The constitutive equations (1) and (2) together define the non-
local constitutive behavior of a Hookean solid. Eq. (1) represents
the weighted average of the contributions of the strain field of all
points x0 in the body to the stress field at point x. In view of the
difficulty in using the integral constitutive relation, Eringen [9]
proposed an equivalent differential model as

1�μ2
0∇

2� �
σ ¼ σ; μ0 ¼ τ2ℓ2 ¼ e20a

2 ð3Þ
where e0 is a material constant, and a and ℓ are the internal and
external characteristic lengths, respectively. It is assumed that
when the local stress tensor is expressed in terms of the dis-
placement gradients through the generalized Hooke's law, the
displacements appearing on the right-hand side of Eq. (3) are the
non-local displacements.

3. Equations for classical Euler–Bernoulli beam theory

In this section, equations of motion of the Euler–Bernoulli
beam theory are derived using the dynamic version of the prin-
ciple of virtual displacements [54] with the von Kármán non-
linearity accounting for moderate rotations. Since the principle of
virtual work is independent of the constitutive relations, the
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