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a b s t r a c t

We investigate the homogenized elastic–viscoplastic behavior of plate-fin structures subjected to two
pore pressures, p1 and p2. The plate-fin structures considered are assumed to be periodic and composed
of metallic materials. Hill's macrohomogeneity equation is used to show three special cases in which one
of p1, p2 or pm (the mean of p1 and p2) entirely affects the homogenized viscoplastic behavior in the
steady state. To verify the three special cases, we perform FEH (finite element homogenization) analysis
of an ultrafine plate-fin structure subjected to p1 and p2, for which two base metals with different strain-
rate sensitivities are considered. It is demonstrated that the three special cases typically occur under
uniaxial tension and compression in the stacking direction, depending on the strain-rate sensitivity of
the base metals. It is further shown that a macromaterial model reproduces well the homogenized
stress–strain relations attained in the FEH analysis if p1, p2 or pm is entered for Terzaghi's effective stress
in the viscoplastic equation in the macromaterial model.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Plate-fin heat exchanges are likely candidates for compact and
highly efficient heat exchangers in modern high-temperature gas-
cooled reactors [1–3]. For this purpose, ultrafine plate-fin cores
have been fabricated by brazing plates and fins, which have
considerably small thicknesses of 0.5 and 0.2 mm, respectively
[1,3]. The fabricated cores thus have anisotropic open-cellular
structures consisting of alternately stacked plates and fins, as
analyzed in detail in recent studies [4–7]. This cellular structure
is designed to be subjected to high pore pressures in addition to
thermal stresses [1,3]. Perforated thick plates in fast reactor heat
exchangers are also subjected to high pore pressures and thermal
stresses [8]. The plate-fin cores and perforated plates mentioned
above can be regarded as macrobodies that have anisotropic open-
porous microstructures in which pore pressures act independently
of thermal stresses.

Full-scale finite element meshing of the plate-fin cores and
perforated thick plates invariably results in high computational
costs because of the large number of plate-fin layers and circular
cylindrical holes. For example, more than 1000 layers of plates and
fins need to be stacked in compact heat exchanger cores [1]. If a

macromaterial model is available, the high computational costs
can be drastically reduced.

Ohno et al. [9] described micro–macro relations relevant to
periodic unit cells of anisotropic open-porous bodies subjected to
a pore pressure, and showed the following constitutive features
using Hill's macrohomogeneity equation [10]: Terzaghi's effective
stress [11] is work-conjugate to the viscoplastic macrostrain rate,
and the constitutive relation of this work-conjugate pair has the
same stress exponent as Norton's power law assumed for the base
metals of open-porous bodies. Ohno et al. [9] then developed a
macromaterial model in which the viscoplastic macrostrain rate
was represented as an anisotropic power function of Terzaghi's
effective stress. The resulting macromaterial model was applied to
an ultrafine plate-fin structure with uniform pore pressure, and
the corresponding finite element homogenization (FEH) analysis
was performed for comparison. It was thus demonstrated that the
developed macromaterial model simulates the FEH analysis results
well despite there being no fitting parameter for the effect of pore
pressure.

The ultrafine plate-fin cores mentioned have primary and
secondary flow channels that alternate in the stacking direction,
as schematically illustrated in Fig. 1; for recuperative heat exchan-
gers, primary and secondary flow channels are designed to be
subjected to considerably different pore pressures [3]. This raises
the question of which pore pressures is effective for the homo-
genized elastic–inelastic behavior of the ultrafine plate-fin cores,
though only a uniform pore pressure was assumed in the above
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mentioned study by Ohno et al. [9]. Incidentally, two pore
pressures were considered to examine their effect on void growth
and coalescence in polycrystalline metals containing large and
small voids, which were observed as intergranular and intragra-
nuler voids [12–14].

In this study, we investigate the homogenized elastic–visco-
plastic behavior of plate-fin structures with two pore pressures, p1
and p2. The plate-fin structures considered are assumed to be
periodic and composed of metallic materials. We focus on which
pore pressure is effective in determining the homogenized elastic–
viscoplastic behavior. This paper is structured as follows. Section 2
describes the periodic unit cell properties assumed in the present
study. In Section 3, Hill's macrohomogeneity equation [10] is used
to show three special cases in which one of p1, p2 or pm entirely
affects the steady-state homogenized viscoplastic behavior. Here,
pm indicates the mean of p1 and p2. In Section 4, by performing
FEH analysis of an ultrafine plate-fin structure, it is demonstrated
that the three cases typically occur under uniaxial tension and
compression in the stacking direction, depending on the strain-
rate sensitivity of the base metals. It is shown in Section 5 that a
macromaterial model reproduces the FEH analysis results well if
p1, p2 or pm is entered for Terzaghi's effective stress [11] for
representing the viscoplastic macrostrain rate. Conclusions are
given in Section 6.

In this paper, direct notations are used for vectors and tensors,
and inner products between them are indicated by middle dots or
colons (e.g., uUv¼ uivi, D : ε¼Dijklεkl). In addition, the second- and
fourth-rank unit tensors are denoted by I and I, respectively.

2. Periodic unit cell properties

Let us consider a plate-fin, periodic unit cell Y consisting of a
solid region V s and two open-pore regions Vω1 and Vω2 (Fig. 2).
The plates and fins are bonded to each other to be regarded as a
solid region V s. The open-pore regions Vω1 and Vω2 are separated
to be subjected to different pore pressures. The boundary ∂Y of Y is
partitioned into ∂Ys, ∂Yω1 and ∂Yω2, as illustrated in the figure.

2.1. Microscopic material properties

We assume that the medium in Vω1 and Vω2 has neither rigidity
nor viscosity, and that pore pressures p1 and p2 act in Vω1 and Vω2,

respectively:

r¼ �p1I in Vω1; ð1Þ

r¼ �p2I in Vω2; ð2Þ
where r denotes the stress in Y , and without loss of generality,
we suppose

p1Zp2: ð3Þ
We assume that the solid region V s undergoes small deforma-

tion at a high temperature, and consequently that the strain ε in V s

is additively decomposed into elastic and viscoplastic parts:

ε¼ εeþεvp in V s: ð4Þ

We further assume that εe and εvp obey Hooke's law and Norton's
power law, respectively:

εe ¼ 1þν

E
r� ν

E
ðtr rÞI; ð5Þ

_εvp ¼
3
2
_ε0

seq
s0

� �n�1 s
s0

; ð6Þ

where E and ν are elastic constants, tr indicates the trace, the
superposed dot represents differentiation with respect to time, _ε0,
s0 and n are the material parameters of viscoplasticity, s denotes
the deviatoric part of r, and seq expresses the von Mises equivalent
stress defined as

seq ¼
3
2
s : s

� �1=2

: ð7Þ

2.2. Macrostrain and macrostress

Because Y is a periodic unit cell, the affine deformation part of
displacement u in Y is considered to be due to the macrostrain E of
Y [15,16]:

u¼ E � xþ ~u; ð8Þ
where x is the position of a point, and ~u indicates the perturbed
part of u that satisfies the Y-periodic boundary condition:

~uðxðþ ÞÞ ¼ ~uðxð� ÞÞ: ð9Þ
Here, xðþ Þ and xð� Þ are a pair of points on opposite boundary
planes of Y (Fig. 2).

Fig. 1. Plate-fin structure with primary and secondary flow channels subjected to
pore pressures p1 and p2.

Fig. 2. Plate-fin, periodic unit cell Y consisting of a base solid region Vs and two
open-pore regions Vω1 and Vω2 indicated in red and blue colors, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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