Accepted Manuscript

Full Length Article

Ce, Ti modified MCM-48 mesoporous photocatalysts: Effect of the synthesis route on support and metal ion properties

Mihaela Mureseanu, Mihaela Filip, Simona Somacescu, Adriana Baran, Gabriela Carja, Viorica Parvulescu

PII: S0169-4332(18)30724-4

DOI: https://doi.org/10.1016/j.apsusc.2018.03.053

Reference: APSUSC 38801

To appear in: Applied Surface Science

Received Date: 15 September 2017
Revised Date: 20 January 2018
Accepted Date: 7 March 2018

Please cite this article as: M. Mureseanu, M. Filip, S. Somacescu, A. Baran, G. Carja, V. Parvulescu, Ce, Ti modified MCM-48 mesoporous photocatalysts: Effect of the synthesis route on support and metal ion properties, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.03.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Ce, Ti modified MCM-48 mesoporous photocatalysts: Effect of the synthesis route

on support and metal ion properties

Mihaela Mureseanu^a, Mihaela Filip^b, Simona Somacescu^b, Adriana Baran^b, Gabriela Carja^c, Viorica

Parvulescu^{b*}

^a University of Craiova, Department of Chemistry, 107 I Calea Bucuresti, 200144 Craiova, Romania

b"Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021, Bucharest, Romania

^c Faculty of Chemical Engineering and Environmental Protection, Technical University of Iasi, 71 D. Mangeron, Iasi, Romania

Abstract

New Ti-MCM-48 and CeTi-MCM-48 photocatalysts were obtained by impregnation of the MCM-48

silica support synthesized by a hydrothermal process with aqueous solution of Ti and Ce precursors.

The immobilization of metal cations presented a low effect on the porosity, morphology and structure

of MCM-48 mesoporous silica support as was evidenced by N₂ adsorption-desorption, X-ray

diffraction, SEM and TEM electron microscopy. EDAX analysis and X-ray photoelectron microscopy

(XPS) indicated that titanium cations were present on the mesoporous silica surface only as Ti⁴⁺ species

and the effect of ceria on titanium speciation was different, compared to the CeTi-MCM-48 sample,

previously obtained by direct synthesis. The photocatalytic properties of mono- and bimetallic catalysts

were evaluated in degradation of phenol from water and correlated with the active metallic species

concentration, distribution, speciation and their interaction with the support or each other. An advanced

oxidation mechanism for phenol degradation by radical species was proposed.

Corresponding author

E-mail address: vpirvulescu@.icf.ro

1

Download English Version:

https://daneshyari.com/en/article/7834745

Download Persian Version:

https://daneshyari.com/article/7834745

<u>Daneshyari.com</u>